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ABSTRACT: We used data-driven methods to understand the

formation of impurity phases in BiFeO; thin-film synthesis through 2-methoxyethanol 550 [

the sol—gel technique. Using a high-quality dataset of 331 synthesis Ethylene glycol 600 [Bi2Fe409, Fe203]

procedures and outcomes extracted manually from 177 scientific

articles, we trained decision tree models that reinforce important

experimental heuristics for the avoidance of phase impurities but A é{é

ultimately show limited predictive capability. We find that several == o= @ >

important synthesis features, identified by our model, are often not / L m/;% 4 =3

reported in the literature. To test our ability to correctly impute 5 ;2 [ =¥
o ) ) S e

missing synthesis parameters, we attempted to reproduce nine | ERER e

syntheses from the literature with varying degrees of “missingness”. Bixfe,0, X BiFeO;

We demonstrate how a text-mined dataset can be made useful by
informing new controlled experiments and forming a better understanding for impurity phase formation in this complex oxide
system.

1. BACKGROUND AND INTRODUCTION throughput synthesis,'"*"'*> where a synthesis machine learns
optimal synthesis conditions for a specific target material or
property by taking patterns from historical syntheses and their
results into account. Existing studies show the promise of
autonomous synthesis in accelerating the drive toward efficient
materials discovery, though there are still pitfalls such as a need
for condition initialization and informing experiments based on
historical data.'* These autonomous setups can be directed by
historical datasets of existing syntheses, such as through a
review of reported syntheses in the scientific literature, where a
wealth of historical syntheses and their detailed conditions
have already been reported.

State-of-the-art natural language processing (NLP) tools
make the process of text mining from the literature achievable
on a large scale, without the need for a coalition of human
annotators, and such methods have recently been applied to

At its core, the design process for synthesizing inorganic
materials, like many design processes, encompasses iterations
of experiment planning, execution, and characterization of the
outcome.”” The choice of synthesis conditions is critical for
realizing new materials but is often made by analogy to similar
materials and with limited quantitative motivation. This choice
is further complicated by the expansiveness of the condition
space, especially when prefiring steps (e.g., mixing, stirring, and
chelation) are considered. A thorough understanding of how
the choice of conditions may influence a synthesis would allow
one to realize which precursors and reagents could be used at
which conditions in order to achieve the appropriate evolution
of phases toward a desired target.” Recent studies have shown
how computed thermochemical reaction energies can be used
to understand synthesis pathways;*~" however, these studies . . . 5200- )
Sane 57 P 75 ’ the materials science literature.">>***7** Most of the efforts in
focus primarily on precursor choice and temperature as the . . . .
L . i this subfield have been in the extraction of relevant material
fundamental conditions of interest, whereas many additional » . . .
i, . . . 8,9 entities, such as chemical formulas, material properties, and
conditions are known to be relevant to inorganic synthesis.

As the number of these conditions grows, the dimensionality of pro c'essing condit.ions; meanwhile', effo?ts on large—§cale text
this problem increases, and it becomes harder to model the mining of synthesis pathways remain limited, largely since most
effects of these conditions on synthesis pathway determination.

Data-driven methods in synthesis prediction have the Received: ~ August 29, 2023 i
advantage of capturing the effects of features in very high Revised:  December 8, 2023
dimensional spaces, a task that is difficult for humans. A Accepted:  December 8, 2023
significant bottleneck in this effort is the acquisition of Published: December 29, 2023
sufficient data. The rapid gathering of relevant synthesis data -
can be accomplished directly through autonomous, high-
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Figure 1. Visual summary of text mining to aide material synthesis. Left: schematic depiction of design choices for sol—gel-derived BiFeO; thin
films, including choices of solution precursors and reagents as well as heating and timing conditions; the final result is desired to be phase-pure, as
would be indicated by phase identification in X-ray diffraction. Right: opportunities presented by text mining such synthesis procedures, including
the development of predictive models (decision tree at the bottom left) or convenient visualizations of reported synthesis conditions (pairwise

distribution visualization at the bottom right).

studies in text mining synthesis tend to assume pure target
formation, without the consideration of incomplete reactions
or reactions that form persistent impurity phases. Exploratory
synthesis, on the other hand, rarely yields phase-pure targets.
Instead, precursors or intermediate phases may persist to the
end of the reaction, or the target may form and then partially
decompose, leaving behind impurity phases. These impurities
often have deleterious effects on the material performance but
can also give insights into underlying reaction mechanisms.
Unfortunately, descriptions of “failed” experiments (e.g., those
that do not achieve a pure target) are rare in the published
literature. There is also the problem of incomplete descriptions
of procedures, which hinder meaningful modeling of the effects
of the synthesis conditions and make faithful reproducibility
studies difficult. Nonetheless, experimental articles mentioning
impurity phase formation do exist, and with enough collected,
one may be able to impute such missing parameters and,
ultimately, construct a meaningful model of impurity phase
formation as a function of relevant synthesis conditions. We
approach such a task in this work using BiFeO; (BFO) as a
case study.

BFO is a promising multiferroic material with applications in
spintronics as well as photovoltaic and memory devices.**™°
BFO in bulk has been synthesized as early as the 1960s.””* It
is commonly synthesized in the nanooparticle form via either
solid state® or the sol—gel technique,*” or in thin-film form via
sol—gel*' or physical vapor deposition.*> Sol—gel is a low-cost
and scalable approach to synthesize thin films that are
important in device industries, making it attractive for
commercialization. Reports of the synthesis of BiFeO; thin
films emerged in earnest between 2003 and 2006.”°~* As in
other synthesis methods, impurity phases are common in sol—
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gel-derived BiFeO; thin-film synthesis, including iron-rich
Bi,Fe,0,*° as well as bismuth-rich Bi,;FeOs,*” and
BiysFeO,. " Synthesis choices that avoid the formation of
these phases largely rely on heuristics. For instance, a handful
of studies highlight the effect of annealing temperature on the
final phase composition in this sol—gel setting,”***° generally
indicating that BiFeO; has a rather narrow stability window
that avoids impurity phase formation between 500 and 650 °C;
this narrow stability is consistent with the results from
computational work.”"*> Additionally, it has been shown that
a Bi/Fe > 1 ratio is helpful to avoid bismuth loss, but bismuth
in excess higher than 10% may lead more frequently to Bi-rich
secondary phases.*” Although methods for synthesizing phase-
pure BiFeO; are known,”**” understanding of the fundamental
mechanisms governing the interplay between synthesis
conditions and impurity formation remains limited.

With the goal of machine learning the effects of synthesis
conditions on the formation of competing impurity phases, we
manually compiled a dataset of 331 synthesis procedures and
outcomes from 177 articles describing the sol—gel synthesis
and resulting phase content of BiFeOj; thin films. This aim is
illustrated in Figure 1. Using these data, we trained decision
tree classifiers and find that these confirm known heuristics for
impurity phase formation. The models indicate that two of the
most important determinants for phase impurity formation are
annealing temperatures outside the window of around 500 and
650 °C and Bi/Fe metal ratios greater than 1.1 or less than 1.0,
which is in line with known heuristics in the field. Feature
importance analysis shows that several features related to the
precursor solution preparation, such as the Bi/Fe ratio and
mixing conditions, are strong predictors of phase purity.
However, statistical analysis of the dataset shows that several of
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these features are often missing from publications, between 21
and 47% of the time depending on the condition. We
conducted a set of nine experimental syntheses aimed at
replicating procedures from the published literature with
varying degrees of “missingness” of synthesis conditions and
show to what extent missing synthesis values can be
hypothesized from the body of literature. Additionally, we
discovered noticeable gaps in the synthesis condition space
covered by the dataset, which led us to conduct 12 new
syntheses that navigate previously unexplored regions of the
synthesis condition space. This modeling-experiment inter-
action represents a single generation in a potential active
learning cycle for synthesis prediction between modeling from
text mining and real experiments.

2. METHODS

2.1. Text Mining and Modeling. 2.1.7. Compiling BiFeOj;
Synthesis Corpus. To supply sufficient data for this text mining
study, we first performed a keyword search over a database of full-text
materials science articles to identify syntheses with frequent
discussion of impurity phase formation. This search was performed
over a body of nearly 5 million materials science publications that
were scraped and parsed from online publishers, including Elsevier,
Wiley, the Royal Society of Chemistry, Nature Publishing Group, the
American Institute of Physics, Springer, the American Chemical
Society, the American Physical Society, and the Electrochemical
Society, with journals specific to materials science identified manuall}f.
Details on this process are described in a study by Kononova et al.'®
Only articles published after the year 2000 and that are in the
HTML/XML format were scraped and parsed because PDFs
(comprising the majority of article formats prior to 2000) are difficult
to accurately parse for scientific writing (e.g, complex chemical
formulas), even through state-of-the-art optical character recognition
methods.”® We performed a regular expression”’ search over the full
text of every paper for phrases and vocabulary related to phase purity
(e.g, “impurity phase”, “secondary phase”, “phase-pure”, etc.) via an
Apache Solr-based full-text search tool developed in-house (described
in a study by Cruse et al.'®). This search yielded 82,196 articles. Of
these 82,196 articles, Chemical Named Entity Recognition13 was
applied to the abstracts to extract any chemical names or formulas,
under the assumption that a synthesized material of interest would be
mentioned in the abstract. After normalizing the extracted names
(e.g, through name-to-formula mapping, correcting for various
spellings, etc.), we determined BiFeO;, SrTiOs, and LiFePO,, to be
the most frequently discussed, with 966, 680, and 659 articles,
respectively, and selected impurity phase formation for BiFeOj; as our
focus area. Since the mechanisms for impurity phase formation vary
across synthesis method and desired morphology, we narrowed our
study to BiFeOj; thin films synthesized through the sol—gel method.
Of the 966 BiFeO; articles extracted above, 328 were determined to
be related to sol—gel synthesis based on a previously developed
synthesis paragraph classifier.”® Of those 328, 121 were manually
determined to be related to sol—gel synthesis of BiFeOj thin films and
contain enough synthesis information to be suitable for the dataset
(the remaining articles were related to the sol—gel synthesis of
nanoparticles, synthesis of doped BiFeO; thin films, or contained
relevant synthesis protocols but contained no phase characterization
in the text). To supplement this set, we performed a search over
Clarivate Analytics’ Web of Science, specifically to supply more data
for articles published after 2020 (the most recent large-scale scrape for
our database). This supplementary search yielded an additional 57
relevant articles, totaling 178 articles for sol—gel-derived BiFeOj thin-
film synthesis.

2.1.2. Extraction of Published Sol-Gel Route Thin-Film
Syntheses. We manually extracted 340 sol—gel synthesis procedures
from 178 papers in our corpus. We removed nine procedures that lead
to an amorphous product, leading to a final dataset of 331 procedures
from 177 papers. The sol—gel synthesis protocols described in the text
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are often very complex, spanning many values for a given condition
(e.g, if the authors are studying the effects of various annealing
temperatures). Additionally, the phase purity characterization is most
frequently reported in a separate paragraph from the synthesis
description, which makes the automatic connection of the codified
recipe to the appropriate phase purity outcome difficult. Because of
these challenges and the relatively small number of collected synthesis
articles, the dataset of synthesis conditions and phase purity results
constructed for this work was developed manually. This was
accomplished by two human experts in text and data mining, machine
learning, and materials science who read each paper (and supporting
information, if necessary) individually for the relevant synthesis
conditions and outcomes. The conditions extracted include the choice
of precursor, names of solvents, chelating agents, and other reagents,
spin-coating speeds and times, and the combination of temperatures
and times for various heating steps (discussed in more detail in
Section 3). These consisted of a total of SO synthesis features. The
outcome for each experiment was represented as a list of any specific
impurity phases that formed. The full schema for the extracted dataset
is given in the Supporting Information (Table S1).

2.1.3. Data Processing. For data visualization and modeling, we
assigned numerical values to all the features in the BiFeO; sol—gel
synthesis recipes dataset. After all processing, the dataset consists of
47 unique features. These processing steps are summarized below:

2.1.3.1. Reported Impurity Phases. For our various modeling
frameworks, we implemented both binary (0 = “phase-pure” vs 1 =
“phase-impure”) and multilabel (0 = “phase-pure” vs 1 = “Fe-rich
impurity” vs 2 = “Bi-rich impurity” vs 3 = “both kinds of impurity”)
encodings of the reported impurity phases.

2.1.3.2. Bi and Fe Precursors. The majority of published syntheses
of BiFeOj thin films through the sol—gel route use nitrate precursors
as the Bi and Fe sources. We used label encoding where 1 indicates
that nitrate precursors are used for both Bi and Fe sources, 0 indicates
that either the Bi or Fe source is not from a nitrate, and —1 indicates
that both Bi and Fe source are not nitrate-based.

2.1.3.3. Chemical Embeddings. Because of the complex nature of
sol—gel synthesis, it is important to retain as much information about
the chemicals involved as possible. One-hot encoding of these
components to the synthesis is not satisfactory for dimensionality
reduction or modeling purposes because two chemicals would be
treated as orthogonal entities, even though their function in the
synthesis may be more or less similar to one another. An NLP-
inspired method for capturing this similarity or dissimilarity in
chemicals is mol2vec.”” We implemented the trained and published
embedding model provided by Jaeger et al.*” for our purpose, which
was trained over a corpus of amino acids and organic molecules. The
trained embeddings contain 300 dimensions; therefore, to reduce this
dimensionality, we performed principal component analysis (PCA)
over the embeddings of the set of possible chemicals in this material
space, leading to 61 principle components. To determine the
appropriate number of PCA components that does not lead to
redundant representations but compresses the data as much as
possible, we investigated the convergence of pairwise cosine similarity
between every chemical from 0 to 61 principal components. Based on
this convergence, a reasonable number of principal components was
determined to be 15. Although this is still a high number of features
for one synthesis component, we find it suitable for compressing the
larger data representation while maintaining sufficient fidelity.
Convergence details and a table of related cosine similarities for
these chemical representations are provided in the Supporting
Information (Section S2).

2.1.3.4. Substrate Choice. The choice of the substrate, which is
largely driven by the device application, has an effect on the
nucleation site preference and thus final phase homogeneity and
purity. The majority of substrates in our dataset consist of Pt/Ti/
Si0,/Si, tin-based, or glass substrates. We represent substrate choice
using one-hot encoding with a separate column representing each of
the aforementioned types, one column for choices other than these
three, and one column for a missing substrate description. A plot
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depicting the most common substrates used in the dataset is provided
in our Supporting Information, Figure S4.

2.1.3.5. Separate Hydrolysis. Some reports®™®' specify the
importance of mixing the bismuth and iron nitrate precursors
separately in the solvent due to their different hydrolysis rates. For
this, we used binary encoding to indicate whether the bismuth and
iron precursors underwent separate dissolution.

2.1.3.6. Annealing Atmosphere. According to the extracted data,
the most typical annealing atmospheres for BiFeOj thin films via sol—
gel are air, oxygen, and nitrogen, with one study using argon. One-hot
encoding was used to represent the annealing atmosphere.

2.1.3.7. Filling in Missing Data for Exploratory Data Analysis. To
deal with missing values in our dataset prior to exploratory data
analysis, we set all remaining quantitative values to 0 if they were not
provided.

2.1.3.8. Filling in Missing Data for Modeling. For modeling
purposes, it is necessary to impute missing data that would be
necessary to replicate the synthesis (e.g., precursor concentration, Bi/
Fe ratio) or implied to exist but were simply not provided (e.g, a
prebake step was used and the temperature was given, but the time
was not). More details on the frequency of such missing information
are provided in Section 4.1 and the Supporting Information (Figure
SS5). There are many techniques available to impute such data, known
as missing value imputation (MVI) methods. In our study, we
implement the most popular statistical (substituting median values)
and machine-learned (k-nearest neighbors) imputation methods
according to reviews of MVI methods.””®> For k-nearest neighbors
imputation, we found k = S to be an adequate number of neighbors to
consider when imputing missing values, based on an analysis of
imputing randomly masked values in our dataset. Details of this
analysis are given in Section $4.2 in the Supporting Information.

2.1.4. Decision Tree Modeling. We have sought to train an
interpretable machine learning model that provides insights into the
effects of synthesis conditions on the formation of impurity phases.
While there are many classifier algorithms available with robust
predictive power, we found that more advanced models perform
similarly to the decision tree on our text-mined dataset. Because of
this performance similarity and our prioritization of easily
interpretable predictions, we decided to move forward with the
decision tree classifier for this task, using the sci-kit learn’s Decision
Tree Classifier module (https:// scikit-learn.org/stable/modules/tree.
html). Details of our comparison of different classifiers are provided in
our Supporting Information Section SS.

In our comparison, we considered four model frameworks using a
different combination of MVI (between median value and k-nearest
neighbors imputation) and prediction scheme (between binary and
multilabel). For evaluation, we only considered the binary prediction
task: phase-pure vs phase-impure. Within each of these frameworks,
we considered 10 different randomized splits for training and testing
data, with 20% of the data held out for testing in each, resulting in 40
possible models. In each of these splits, the appropriate hyper-
parameters were determined through cross-validation. The best
estimator from each split was then applied to the held-out test data
to obtain the evaluation metrics. Details on the hyperparameters of
interest and the various evaluation metric values are given in Section
§5.1. Model comparison showed comparable performance between all
models, as shown in Section S5.2. Because we prioritize easy
interpretability, we decided to move forward with a simple decision
tree model. With our best-performing decision tree models, we
constructed learning curves from each of these 40 estimators by fitting
the models to an increasing number of training samples (from 10 to
80% of the total dataset).

2.2. BiFeO; Synthesis Experiments. 2.2.1. Film Fabrication.
Experimental syntheses were performed either for exploratory
purposes or as an attempt to replicate one of the four published
procedures.****% Precursor solutions were prepared by dissolving
Bi(NO,);-SH,0(>99%, Sigma-Aldrich) and Fe(NO,);-9H,0
(>99%, Sigma-Aldrich) in 2-methoxyethanol [2-ME] (anhydrous,
99.9%, Sigma-Aldrich). The stoichiometry of Bi/Fe was varied
between 0.9 and 1.05 depending on the experiment. For films
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prepared with a chelating agent, citric acid (99.9%, Sigma-Aldrich)
was added to the precursor solution with a molar ratio of citric acid/
metal salt (4:1). Stirring temperatures and times were between 25—90
°C and 2—-24 h, respectively, depending on the experiment. Each
solution had a concentration of either 0.25 or 0.4 M depending on the
experiment. After complete dissolution of the precursors, the solution
was spin-coated on either glass substrates, or the relevant substrate if
the experiment is an attempt to replicate a published synthesis (see
Section 4.3), at 3000 rpm for 30 s. Then, the sample was dried on a
hot plate at 80 or 200 °C for 2 or 10 min and baked on a hot plate at
350 or 400 °C for S min according to the experiment. All drying and
baking was performed in air. The spin coating/baking procedure was
repeated five times to obtain thick films. The as-cast baked films were
annealed in a tube furnace at 550 or 640 °C with various annealing
times for exploratory experiments or at the reported temperature for
replication experiments. Film preparation was performed in air or O,
atmosphere depending on the experiment.

2.2.2. X-ray Diffraction. XRD measurements were performed at
room temperature in the 20 range of 10—60° with a step size of 0.01°
and a scan speed of 4° min~', using an X-ray diffractometer (Rigaku,
SmartLab) with Cu Ka radiation (1.5406 A) and a HyPix-3000 high-
energy-resolution multidimensional semiconductor detector.

3. TYPICAL SOL—GEL-DERIVED BIFEO; THIN-FILM
SYNTHESIS

To provide context for this synthesis space and its existing
heuristics, we provide a walkthrough of a typical sol—gel
BiFeO; synthesis. As discerned from the dataset constructed
for this work and a review of sol—gel BFO thin-film synthesis
by Zhang et al,*" the primary steps of such syntheses include:
(a) solution (“sol”) preparation and gelation (“gel”), (b)
deposition and spin-coating along with possible drying and
pyrolysis steps, (c) postdeposition pyrolysis, and (d) the final
crystallization (see Figure 2). Details of each step depicted in
Figure 2 are described below.

(a) The preparation of the solution involves mixing metal
salt precursors with a solvent and possible chelating
agent. Bi and Fe precursors are most typically nitrate-
based, though several studies (particularly early sol—gel
thin-film syntheses) use acetate-based precursors. The Bi
precursor is often added in excess of the Fe precursor
due to the volatility of bismuth metal during annealing.é7
Typical solvents include 2-methoxyethanol and ethylene
glycol or a combination of the two. Chelating agents
such as citric acid, acetic acid, and acetic anhydride are
frequently used in solution preparation since they
balance the rates of hydrolysis and condensation of
metal—organic complexes, which aides in the formation
of the ultimate “gel” without unwanted precipitation.*'
During mixing of the solution components, the mixture
may be heated beyond room temperature to improve
homogeneity, particularly if solid citric acid is used as a
chelating agent. The solution may be aged on the order
of days prior to deposition.

The prepared solution is then deposited onto a
substrate, which is spun to create an evenly coated
layer. The spinning step may include only one step or
two (the second step having a higher spinning rate than
the first). The process should be repeated several times
in order to reach the desired thickness. The thin film is
then often dried, which takes place at temperatures of
~100 °C.

Pyrolysis (prebaking) may be included to remove
extraneous solvent and organic material. This occurs
either after all layers are spun onto the substrate or

(b)

(c)
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Figure 2. Schematic of typical sol—gel BiFeO; thin-film synthesis. (a) Metal precursor salts are mixed with solvents and other reagents under
choice of heating and stirring time. (b) Mixed solution is deposited onto a spinning substrate, usually in multiple layer-by-layer steps to reach the
desired film thickness; the repetitive layer-by-layer coating procedures can be applied either after drying, prebaking, or annealing steps. (c) Optional
pyrolysis (or prebake) step to remove any remnant organic species. (d) Annealing to crystallize the final phase.

between every layering step (“layer-by-layer pyrolysis”,
depicted by the greyed out portion in Figure 2b). This
typically takes place at slightly higher temperatures
(~300 °C).

(d) Annealing for crystallization is the highest temperature
step (generally between 500 and 600 °C). This may be
executed once after all layers are deposited or between
every layering step (“layer-by-layer annealing”, depicted
by the grayed out portion in Figure 2b). Sometimes,
experimentalists use a different temperature during the
final annealing compared to the layer-by-layer steps.

The phase composition of the final sample is then
determined using XRD. Impurity phases are often detected
in the final film, including the binary oxides Bi,O; and Fe,0;,
Fe-rich Bi,Fe,O,, and several Bi-rich phases such as Bi,sFeO3,
Bi,FeO,, and BijsFe,,O¢;. The mullite Bi,Fe,Oy and sillenite
BiysFeOy, (and other related) phases are known to be
thermodynamically competitive with the target BiFeO,
phase.”® Hypotheses for the mechanisms leading to the
formation and frequent persistence of these two phases have
been investigated previously for solid-state settings, including
the possibility of competing diffusional processes™ and
pseudo-ternary phase competition between the starting
bismuth and iron precursors and metal oxide impurities
present in those precursors.”” For sol—gel synthesis, in-depth
studies on the chemical processes encountered in the precursor
solution have been conducted;”® however, mechanistic under-
standing for the formation of these impurity phases in wet
chemical environments (such as in sol—gel synthesis which is
the focus of this study) is largely driven by analogy or
extrapolation from these solid-state studies.

4. RESULTS

We divide the results of our study into four sections: (1) a
summary of the conditions extracted in our text-mined
synthesis dataset, (2) results from predictive modeling of
impurity phase formation using decision trees, and results from
informed experiments focused on (3) reproducing existing
results, and (4) exploring underexamined synthesis condition
spaces.
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4.1. Text-Mined Dataset. Across all 331 extracted
experiments, 24.2% resulted in a sample containing one or
more impurity phases; across all 177 articles, 21.4% contained
at least one experiment resulting in phase impurities. The most
commonly appearing impurity phase is the Fe-rich Bi,Fe,O.
Several Bi-rich phases, such as Bi,sFeOj), make up the next
most prevalent impurity phases, followed by the binary oxides
Bi,O; and Fe,O;. The overwhelming majority of syntheses
(317 out of the 331 extracted syntheses) use hydrated nitrates
as the metal precursors. A visual summary of common
chemical reagents (solvents and chelating agents), processing
temperatures, and frequently omitted information is provided
in Figure 3.

The most common combinations of chemicals used to build
the precursor solution are listed in Figure 3a. The most
frequently used solvent is 2-methoxyethanol (“2ME”), and it is
most often mixed with chelating agents such as acetic
anhydride (“AAnhyd”), acetic acid (“AA”), or a combination
of the two. Another common chelating agent that is sometimes
mixed with 2-methoxyethanol is citric acid (“CA”). Ethylene
glycol (“EG”) is used less frequently and is usually mixed with
citric acid and nitric acid (“NA”).

The range of choices for temperature in the various heating
steps in this synthesis process is illustrated through the
histograms in Figure 3b. “Layer-by-layer” and “final” prebake
and annealing steps are combined for their respective
distributions, which is why the “Annealing” histogram contains
more than 331 counts. Each step shows a skewed overall
distribution (left-skewed for drying and annealing steps and
right-skewed for prebake). Additionally, each step has a fairly
substantial spread of temperatures, ranging across about 200
°C for drying steps, 300 °C for prebake steps, and over 400 °C
for annealing steps. The normalized standard deviations are
0.38, 0.22, and 0.12 for the drying, prebake, and annealing
steps, respectively. The extent to which samples need extensive
drying and prebaking will depend on the organic reagents used
and the concentration of the precursor; thus, their value will
depend on those experimental choices, partly explaining why
drying and prebake temperatures have larger normalized
standard deviations; conversely, the annealing temperature
for crystallization of the target phase is less dependent on these
choices and more on an historical understanding for the typical
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Figure 3. Summary of reported synthesis conditions. (a) Most frequently used combinations of solvents and chelating agents (out of 331 synthesis
procedures); 2ME = 2-methoxyethanol, AAnhyd = acetic anhydride, AA = acetic acid, CA = citric acid, EG = ethylene glycol, and NA = nitric acid.
(b) Histograms for drying, prebake, and annealing temperatures. (c) Box and whisker plots for the values of the missing synthesis conditions that
are considered necessary for proper replication of a procedure and which are most frequently missing; orange lines indicate median value, bottom
and top box boundaries are first and third quartiles, respectively; whiskers represent 1.5X extension from quartile bounds; individual points
represent outliers; and bold percentages in x-axis indicate the percentage of articles missing that condition.

temperatures needed to achieve a phase-pure product, in this
case between 500 and 600 °C.

While the statistics for the extracted values in such synthesis
choices are helpful in verifying appropriate diversity and
breadth of sampling for the dataset, it is also important to
understand the level of “missingness” of conditions in the
procedures extracted here. In fact, many of the syntheses
extracted in the dataset are missing conditions that should be
considered vital to successfully reproduce the synthesis, which
we highlight in Figure 3c (note that supporting information
was inspected during extraction, as well). The minimum
information for such reproducibility is debatable, particularly
since those familiar with the field may be able to intuit certain
conditions based on the total literature. For the purposes of
learning synthesis directly from the literature, however, we
consider the following information at a minimum to be
necessary for a “complete” recipe (with any other omitted
information assumed to simply not be included in the
synthesis, such as aging times):

e precursors and reagents used (including metal nitrates,
solvents, and chelating agents)
precursor and reagent amounts
Bi/Fe molar ratio
precursor solution molar concentration
stirring conditions (time and temperature)

annealing conditions (time and temperature)

We acknowledge that this variable list may not be exhaustive
in describing a synthesis. Of these conditions, the least
frequently omitted are the metal precursor and reagent choice
and the choice of annealing conditions, all of which are left out
of only two articles. Figure 3¢ provides a statistical breakdown
of the values employed for the remaining experimental
conditions listed above along with their frequency of omission.
The box-and-whisker plots illustrate the range of values
employed for each of these conditions, along with the median
value (orange line), first and third quartiles (bottom and top of
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boxes, respectively), 1.5X extension from the quartile bounds
(whiskers), and remaining outliers (points). The bold
percentages in the x-axis labels represent the fraction of
recipes in the dataset that are missing that condition. The Bi/
Fe ratio is missing from 38 articles (21%) of articles. This is an
important condition to consider for these syntheses because
too little bismuth may lead to bismuth loss (due to its
volatility) but too much will often lead to Bi-rich impurity
phases.” The distribution of values for the Bi/Fe ratio is fairly
concentrated around 1.05; nonetheless, studies’>”' have
shown that even small deviations in this ratio (ABi/Fe
~0.03) will affect the resulting phase composition. Precursor
concentration and mixing conditions (temperature and time)
all show fairly wide distributions of values, making it difficult to
reliably assume the value that was used for a given synthesis if
that information is omitted. The concentration of the
precursor solution is missing from 54 articles (31%). This
value is also important to include since the metal nitrate
concentration in the solution is expected to influence the
homogeneity of the coated layers, as well as the chances of
unwanted precipitation during gelation.”' Finally, the most
frequently omitted processing conditions are the time (69
articles, 39%) and temperature (83 articles, 47%) of solution
stirring. These conditions are important to include since they
will also determine the homogeneity of the predeposited
solution, particularly when solid reagents with dissolution
temperatures above room temperature, such as citric acid, are
used. This overall lack of a uniform and complete synthesis
procedure ontology’” also causes problems in modeling where
missing values must either be replaced by (possibly erroneous)
interpolated values or require entire data points to be removed,
leading to the worse model performance. We deal with such
missing values using statistical (from the median value) and
machine-learning (from k-nearest neighbors) imputation
methods in our modeling. A larger-scale visualization of the
frequency of missing data is given in Figure SS5.
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Figure 4. Predictive modeling of text-mined dataset. (a) F1 scores across increasing training set size (from 10 to 80% of total data, using 20% of
data for test set in each evaluation). Error bars are generated through six different randomizations in train/test split for each number of training
samples. Each curve represents a different combination of MVI and output labeling: “mmvi” = median missing value imputation; “knn” = k-
nearest neighbors MVI; “binary” = model predicts whether synthesis results in phase-pure synthesis or has phase impurities; “multilabel” = model
predicts outcomes among “phase-pure”, “Fe-rich impurities”, “Bi-rich impurities”, and “both kinds of impurities”.(b) Root of sample decision tree
trained over text-mined dataset; specific features and decisions made at each node are provided. (c) Visual representation of important numerical
features used as decision boundaries in the decision tree model: layer-by-layer annealing temperature and Bi/Fe molar ratio; (c)(i) and (c)(iii)
panels show the distribution of values found from the literature for each of these parameters across phase-pure (blue) and phase-impure (orange)
syntheses, with crossover between these outcomes indicated in purple; smooth distributions are constructed through Gaussian kernel density
estimation (KDE); and (c)(ii) panel shows decision boundaries learned by this decision tree estimator, with blue regions indicating a phase-pure
sample and orange regions indicating a sample with impurity phases. A scatter plot of individual data points overlays the decision boundaries;
phase-pure points are empty blue circles, phase-impure points are solid orange circles, and square points represent syntheses using 2-
methoxyethanol + citric acid [corresponding to the second decision made in (b)].

4.2. Interpretable Phase Impurity Formation Model- neighbors imputation for missing values. We did not need to
ing. To predict the formation of impurity phases based on consider the imputation of any categorical variables since those
synthesis conditions, we trained decision tree models using the were frequently reported.
text-mined dataset. Our attempts to construct an interpretable Because our dataset shows an imbalance between phase-pure
model that predicts impurity phase formation based on and phase-impure syntheses (75.8%:24.2%), an appropriate
synthesis conditions proved to have limited performance. evaluation metric should be chosen so as not to misrepresent
Nevertheless, we are still able to recover well-known heuristics the predictability of the model. Unlike traditional accuracy

for phase-pure synthesis, and we identify important determi-
nants of impurity phase formation in the preparation of the
precursor solution.

We chose to model this task using a decision tree for its easy
interpretability (as if training a new bench chemist how to
make a set of decisions based on available resources) and
ability to capture nonlinear relationships. The details for data
featurization and training are described in Section 2.1.4, and
the performance and inferences made by the model are
summarized in Figure 4. In Figure 4a, we show the learning
curves for four different model frameworks: binary classi-

scores, the F1 score, which represents a harmonic mean
between the precision and recall of a classifier, takes into
account the false negatives and false positives (in this case,
syntheses predicted to be phase-pure but actually contain
phase impurities and syntheses predicted to have phase
impurities but actually are phase-pure, respectively). It should
be noted that the F1 score does not completely remove issues
from evaluating imbalanced classification tasks, such as the fact
that the class distribution during training and even testing may
not persist when the model is used out-of-the-box. Never-

fication using median imputation for missing values; binary theless, this is a partial solution for evaluating the present task.
classification using k-nearest neighbors imputation for missing We include evaluation on additional metrics, such as the
values; multilabel classification using median imputation for Mathews Correlation Coefficient, in the Supporting Informa-
missing values; and multilabel classification using k-nearest tion.
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Both multilabel models show better performance compared
to their binary classifier counterparts, showing that providing
more information to the model (here, what specific types of
impurity phases form) helps improve the prediction ability.
The variation in F1 score for all models is quite substantial but
seems to improve with the addition of more data points,
indicating that a larger dataset can help improve model stability
further. Both MVI methods perform similarly, with kNN-based
imputation showing slightly better variation in F1 score,
highlighting a slight preference for ML-based imputation when
consistency in performance is desired.

Despite the limited predictive power of these models, our
best-performing models can identify decision boundaries that
corroborate known experimental heuristics. Feature impor-
tance values from our modeling were tabulated and averaged
across each training. The top S most important features were
determined to be, in order, (1) the layer-by-layer annealing
temperature, (2) the Bi/Fe ratio, (3) the final annealing
temperature, and the (4) mixing temperature and (5) time.
These rankings are in line with known heuristics in the field, as
discussed in Section 2.2.1, and, incidentally, highlight the risk
of not including vital synthesis details such as the Bi/Fe ratio
and mixing conditions, both of which are often omitted from
procedure descriptions as mentioned in Section 4.1. To assess
the importance of these under-reported variables and the
possible ineffectiveness of MVI, we conducted nine experi-
ments aimed at reproducing reported syntheses with varying
degrees of missingness (see Section 4.3).

We further inspect the ability of our models to distinguish
important boundaries in the synthesis condition space through
the top of the tree for one of these models, as shown in Figure
4b. We note that the order in which decisions appear does not
necessarily reflect the order of decisions that would be made in
a laboratory but rather reflect the hierarchy of importance of
the features in predicting the final phase purity of the sample,
as determined by the model. From the root of the tree in
Figure 4b, the model first observes whether the synthesis
employs layer-by-layer annealing at a temperature above
(traversing to the right) or below (to the left) 655 °C. This
value is not a specific value found in the dataset but rather a
boundary in the 47 dimensional feature space determined by
the decision tree model to most effectively discriminate
between phase-pure and phase-impure syntheses. Syntheses
that anneal above this temperature are decidedly impure, and
those below this temperature encounter further decisions. A
visualization of the values for the parameters reflected in Figure
4b along with the synthesis outcome (phase-pure or phase-
impure) is shown in Figure 4c. Here, Figure 4c(i) illustrates
the distribution of layer-by-layer annealing temperatures
employed across the dataset, with distributions (calculated
using Gaussian kernel density estimation) distinguished
between phase-pure and phase-impure syntheses. The y-axis
units are arbitrary since the distributions are scaled according
to the number of samples in that subset (i.e., pure or impure).
The distributions support the first decision made by the tree
since we see a noticeable shift in the centers of the
distributions for phase-pure syntheses and phase-impure
syntheses at temperatures of 500 °C and higher. Following
now the left-hand branches of Figure 4b, the next observation
made by the model is whether the metal nitrates are dissolved
in a mixture of 2ME and CA (traversing to the right) or some
other chemical mixture (traversing to the left). The majority of
syntheses in the dataset traverse the leftward path, and all of
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those traversing to the right result in a phase-pure sample.
Upon inspection of the dataset, every procedure (27 total) that
uses only 2ME and CA as its precursor solution reagents (i.e.,
traveling to the right from this node) results in a phase-pure
sample. Samples from the text-mined dataset using this
combination of chemicals are depicted as squares in Figure
4c(ii), and all of those are blue, representing phase-pure
synthesis. Because this decision is made on a nondiversified
subset of the dataset (i.e., every relevant data point is phase-
pure), such a result presents an opportunity for hypothesis
testing (e.g, “does the specific combination of 2ME + CA
mitigate the formation of impurity phases more than other
reagents?”) and to probe underexplored regions of the
synthesis condition space. Finally, the model queries whether
the Bi/Fe ratio is greater than (to the right) or less than or
equal to (to the left) 1.1. Investigating the Bi/Fe molar ratio
distributions for phase-pure and phase-impure syntheses in the
bottom-right panel of Figure 4c(iii), we see that, indeed, a
noticeable peak and tail in the distribution of phase-impure
syntheses are seen at Bi/Fe ratios at and above 1.1:1.

We emphasize the overall complexity in predicting phase
purity based on the provided synthesis conditions through the
pairwise scatterplot between these two parameters, as shown in
the bottom-left panel of Figure 4c(ii). Here, individual phase-
pure (blue circles/squares) and phase-impure (orange dots)
syntheses overlay the decision boundaries made by the
decision tree model from Figure 4b, with orange regions
representing phase-impure synthesis and blue regions being
phase-pure. Compared to the single-condition distributions
shown in Figure 4c(i) and Figure 4c(iii), Figure 4c(ii) makes it
apparent that distinguishing regions of combinations of
conditions leading with certainty to a phase-pure sample
from those leading to phase impurities becomes more difficult
as the number of conditions considered increases. This is
particularly true for less predictive parameters, as seen in the
full set of pairwise purity visualizations in Figure S6.
Additionally, despite the easy interpretability of decision tree
modeling, the decisions made are not always physically
reasonable. For instance, the strip of blue predicting “phase-
pure” syntheses above Bi/Fe ratio = 1.1 is within the typical
window of phase-pure syntheses when considering annealing
temperature; however, every synthesis above that Bi/Fe ratio
shows phase impurities. The density of points in this region is
low, so additional testing in this subspace would help improve
the quality of decisions made here.

4.3. Reproducibility of Published Procedures. To
investigate the importance of specific synthesis condition
variables in reproducing published experiments, we conducted
a set of nine experiments aimed at replicating the results from
four separate papers. The syntheses from these papers*®®*~%
were chosen specifically because they were missing what we
believed to be vital information to the successful replication of
the experiments (discussed more in Section 4.1). For these
missing conditions, we substituted either median values or
typical choices from the literature (particularly if a median
value does not make sense for another given condition, such as
stirring at room temperature while using citric acid) or we
considered ranges of possible reasonable values. The
conditions, results, and predictions made by our models for
these are provided in Table 1.

Our attempt to reproduce the phase-pure synthesis in A1,°*
which was missing only the mixing temperature, was successful
when we substituted 25 °C, the median mixing temperature.
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Table 1. Suggested Experimental Conditions to Reproduce Experiments in the Literature with Missing Values

Missing Substituted Reportied Replica}tion Predicted
Exp. ID DOI . Impurity Impurity Phase-
Information Values o
Phases Phases Pure
Al 10.3390/ma12091444 Mixing 25°C - - 95%
Temperature
Amount of
A2 10.1002/ange.201406044 Agfﬁ:li\tllll;%nb 4 %{}CF“)’ - - 87.5%
Temperature
Precursor
A3 10.1007/s10854-013-1374-0 | Concentration 0-25M BisFe Og : 97.5%
A4 0.4M - 100%
0.25M, 0.9, 75°C
A5 for 2 hr (anneal amorphous 32.5%
in O3)
0.25M, 1.00,
A6 75°C for 2 hr Biy, O3 32.5%
(anneal in Oo)
Precursor
ot | gt 00 |
AT 10.1002/sml1.201603457 Ratio. 75°C for 2 hr i - 80%
S'rirring (anneal in Og)
Conditions
0.25M, 1.05,
A8 90°C for 24 hr - 100%
(anneal in O2)
0.4M, 1.05, 90°C
A9 for 24 hr (anneal - 100%
in O3)

“Predicted outcome based on percentage of “phase-pure” predictions among the 10 best-performing models from each randomization seed and

four modeling frameworks (40 predictions total).

Our best-performing models predict that this synthesis would
be phase-pure 95% of the time. Inspection of the decision trees
reveals that the use of 2-methoxyethanol and ethylene glycol
together in the precursor solution often contributed to the 5%
of phase impurity predictions. Experiment A2,°® which resulted
in phase-pure BiFeOj in the literature, was missing the amount
of chelating agent (citric acid in this case) and the mixing
temperature. Our replication attempt was successful when
using the typical amount of citric acid chelating agent (4:1
CA/Fe) and median mixing temperature for synthesis in the
literature that includes citric acid (75 °C). Our decision trees
correctly predict this synthesis, leading to a phase-pure result,
87.5% of the time. Of note, this procedure combines 2-
methoxyethanol and citric acid in its precursor solution, which
was shown to be a useful predictor for phase purity in this
dataset (see Section 4.2). A3—A4'® reported a Bi,Fe,O,
impurity phase and was missing the concentration of the
precursor solution. We were unable to reproduce this result
since we were only able to produce phase-pure BiFeO; using
either the median precursor concentration (0.25 M) or a
higher-than-typical precursor concentration (0.4 M). Interest-
ingly, our model predictions for this set returned a high
percentage of phase-pure predictions, which agrees with our
results but disagrees with what was originally reported.
Inspection of the decision tree paths traversed for this
procedure shows that the annealing temperature of 500 °C
and the combination of 2-methoxyethanol with ethanolamine
in the precursor solution are frequently considered as factors
leading to phase-pure predictions. The high percentage of
phase-pure predictions along with the lack of production of
impurity phases indicates that the actual precursor concen-
tration used may have been less than the median value
contained in the text-mined dataset. Finally, AS—A9°° reported
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phase-pure BiFeO; and was missing the precursor concen-
tration, the Bi/Fe ratio, and the stirring conditions. Our first
replication attempt, AS, used the median precursor concen-
tration (0.25 M), a 0.9:1 Bi/Fe metal ratio (lower-than-
typical), and the median stirring temperature and time
provided in the dataset for synthesis with citric acid. This
attempt resulted in an amorphous film and thus failed to
reproduce the reported results. Our second attempt, A6, used
the same precursor concentration and stirring conditions, but
we increased the Bi/Fe ratio to 1:1. This led to a binary Bi, O,
impurity phase. We then increased the Bi/Fe metal ratio once
more to the median value, 1.05:1, in A7, which successfully
reproduced the reported result. We extended these trials by
increasing both the stirring time and temperature (due to the
limited solubility of solid citric acid, lower stirring temper-
atures produce an inhomogeneous precursor solution) and
precursor concentration (since, according to the dataset, lower
precursor concentration has a higher tendency to lead to phase
impurities compared with higher precursor concentrations).
Both of these attempts, A8 and A9, also produced a phase-pure
target, indicating that the Bi/Fe metal ratio may be the most
vital missing information in this case, which is in line with the
feature importance values determined by our decision trees in
Section 4.2. It should be noted that the intuition for a greater-
than-one Bi/Fe ratio would require domain knowledge from a
prospective experimenter attempting to replicate such a recipe;
still, this points to the importance of specifying this
information, particularly if the volatility of a particular
precursor is not explicitly discussed. Additionally, our models
predicted phase-pure syntheses much less frequently for AS
and A6 than for A7—A9, which agrees with our results where
phase impurities formed only for experiments AS and A6. The
most decisive factor leading to phase-impure predictions for AS
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Figure 5. Pairwise condition distributions with targeted regions of interest (ROIs) and resulting syntheses. (a,c) Pairwise condition distributions
for various synthesis conditions (stirring temperature, precursor concentration, and final annealing time) taken from the literature with ROIs for
additional experiments indicated by dashed black ellipses. (b,d) Results from the suggested syntheses are then incorporated into the dataset, and
the condition distributions are revisualized (b,d). Orange points and regions represent syntheses resulting in phase impurities, and blue points and
regions represent phase-pure syntheses. Square points represent the use of citric acid as a chelating agent, and circles represent syntheses without

citric acid.

Table 2. Suggested Experimental Conditions for Exploratory Synthesis of Sol—Gel-Derived BiFeO; Thin Films Based on ROIs

Identified in Figure S

exp. ID Bi/Fe solvent chelating agent conc. (M) stir temp.
B1 1.0S 2-ME 0.4 80
B2 60
B3 40
B4 1.05 2-ME citric acid 80
BS 0.4 60
B6 40
B7 1.0 2-ME 0.25 70
B8 55
B9 40
B10 1.0S 2-ME citric acid 0.25 70
B11 55
B12 40

anneal temp. (°C) anneal time (h) impurity phase(s)
550 0.5
550 0.5
M-Bi,0s, Bi,Fe,O,
550 3
T-Bi,Os, Bi,Fe,O0, BipsFeOs,
550 3

and A6 is the lower-than-median Bi/Fe ratio. The majority of
predictions made for A7—A9 were phase-pure; however, the
regions of the conditions space covering these procedures are
data poor, especially for A8 and A9. This local lack of diverse
data inspired additional syntheses to explore these synthesis
condition regions of interest, as is discussed in Section 4.4.
4.4. Informing New Experiments. We identified areas in
the synthesis condition space that lacked data and proposed
experiments to fill those gaps. With the results of these
experiments, our decision tree model was then retrained to
update the decision boundaries. This exploration and
retraining is depicted in Figure 5. Following Figure 3b, we
focused our attention on regions of synthesis conditions that
are under-reported. Figure Sa,c depicts the visualizations of
solution stirring temperatures with (a) solution precursor
concentrations and (c) final sample annealing times reported
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in the literature, respectively. Regions of interest that appear
unexplored are identified by dashed black ovals. For (a), we
see that the use of a precursor concentration higher than the
median (0.25 M) appears to improve the final phase purity of
the sample, so we tested this by extrapolating to higher
precursor concentrations (specifically 0.4 M, which had no
data from the literature in combination with this high of a
stirring temperature). For (c), we wished to fill in a gap from
the literature for a relatively frequently reported condition, in
this case the annealing time. We therefore suggested a set of 12
experiments that explore these two data-poor regions, while
filling in the remaining conditions with median values from the
rest of the dataset or values that would further interrogate the
decisions made by our trained model, such as the propensity to
predict phase-pure synthesis when using only 2-methoxyetha-
nol and citric acid as the solvent and chelating agent,
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respectively (see Section 4.2). These suggested experiments
are shown in Table 2, along with the resulting phase purity and
any specific impurity phases that formed. These results were
then incorporated back into the synthesis dataset, with those
results highlighted in Figures Sb,d.

Overall, the development of impurity phases in these
experiments appears to be somewhat random. Still, we can
make some observations that indicate the importance of these
under-reported conditions in determining final phase purity
and that highlight ambiguous effects of the inclusion of citric
acid in the precursor solution. From our experiments exploring
higher precursor concentration across a range of stirring
temperatures, represented by Figure Sb and B1—B6 of Table 2,
the only sample to form impurity phases corresponded to the
intermediate stirring temperature (notably with citric acid
included). This could indicate that other synthesis conditions
that were not recorded (or are not typically reported) lead to
both Bi-rich and Fe-rich impurity phases. We can, however,
begin to see the formation of a positive correlation between
precursor concentration and mixing temperature in achieving a
phase-pure outcome, as seen in Figure Sb, particularly at
intermediate to high stirring temperatures. Our experiments
that explored longer annealing times across a range of stirring
temperatures, represented by Figure 5d and B7—B12 of Table
2, show that impurity phases only form when the solution is
mixed at a lower temperature. Additionally, this mix of
impurity phases forms when citric acid is not incorporated into
the solution. From this, we may reinforce the need to include
some chelating agent in order to achieve a suitable gel prior to
deposition.”” However, the fact that the inclusion of citric acid
in BS seemed to be the deciding factor leading to an impurity
phase (compared to the phase-pure synthesis from B2 without
citric acid) indicates that there remains something to be
learned about the effects of citric acid on the synthesis pathway
in this synthesis space. We recently investigated this effect of
citric acid through in situ XRD experiments inspired by our
text-mined dataset, as well as through first-principles modeling,
leading to a conclusion that the use of citric acid helps mitigate
the formation of the Bi,Fe,Oy impurity phase through the
develo7];3>ment of an intermediate bismuth subcarbonate
phase.

5. DISCUSSION

5.1. Utility of Manually Text-Mined Dataset in
Outcome Prediction and Variable Completion. Curating
a dataset relating synthesis procedures to phase purity
outcomes allowed us to train a decision tree model capable
of recovering some well-known heuristics and highlighting
several features that are considered important predictors for
obtaining phase-pure BiFeO;. However, several of these
important predictors (such as the Bi/Fe ratio and other
precursor solution conditions) are often not reported in
published synthesis descriptions, as seen from our summary of
the completeness of our dataset in Section 4.1. Replication of
published results is an important part of the research process
and is hampered when important parameters are omitted from
the reported procedure. It can be possible to impute these
values through a review of other similar published procedures
that include more complete descriptions. As shown by our
experiments in Section 4.3, reproducing published procedures
that do omit synthesis information often leads to ambiguous
outcomes. Still, our reproducibility results indicate that
substituting median or typical values from the literature for

782

missing synthesis conditions can help produce results
consistent with those reported, highlighting the utility of
large-scale text mining for rational data gap imputation. These
findings are only based on the reproduction of four syntheses
reported in the literature, and a more thorough study should
be conducted to make an assessment of the reproducibility of
sol—gel thin film syntheses in general.

To meet our modeling goals, we curated our dataset
manually. However, automated text extraction using state-of-
the-art NLP tools is gaining popularity in many fields,
including materials science. Despite the convenience of these
methods, they are not perfect and tend to struggle with
complex synthesis extraction and procedure-outcome linking.
Addressing these problems is becoming more approachable
with the proliferation of new large language models like GPT-
3, which has been proven useful in creating materials science
chatbot assistants,”” the extraction of complex synthesis
procedures for gold nanorods,”* and structured information
extraction of materials properties, structure, and applica-
tion.”>’® Nonetheless, analyses performed on our manually
curated dataset represent an upper limit of what can be learned
through literature mining alone for the end-to-end synthesis
pathways of a particular material.

5.2. Future Work in Experiments Inspired by Text
Mining. To the best of our knowledge, there have been no
published studies that perform direct experiments based on
modeling and imputation from a text-mined dataset to study
the impact of synthesis conditions on phase purity. Our set of
suggested experiments in Table 2 is an example of how text
mining the synthesis literature can be used to inform syntheses
that evaluate previously under-reported conditions and their
effects on phase purity. In order to increase throughput for
such exploratory experiments, a combination of automatic
identification of regions of interest to explore in the synthesis
condition space and execution of high-throughput experiments
through robotic synthesis laboratories could be implemented
in the future. The results from these and additional informed
experiments can also aid in constructing hypotheses regarding
the effect of synthesis conditions and choices on reaction
mechanisms, which can be further interrogated through first-
principles models”” or directly investigated through in situ
phase characterization.”®

6. CONCLUSIONS

In this work, we constructed a text-mined dataset of sol—gel
synthesis procedures and phase purity outcomes for BiFeO;
thin films with the goal of developing a machine learning
model that predicts the presence of impurity phases as a
function of synthesis conditions. The decision tree models we
trained for this task achieved limited performance, with F1
scores between 0.47 and 0.52, though they confirmed a
number of known heuristics for the avoidance of impurity
phases, namely employing (1) an annealing temperature below
~650 °C and (2) bismuth excess of ~5%. Statistical analysis of
the dataset revealed that many conditions are often missing
from synthesis descriptions in the literature, and our modeling
showed that several of these features (particularly the Bi/Fe
ratio and mixing conditions) are important predictors of phase
purity. Experimental attempts to replicate published syntheses
while substituting typical values from the literature for these
missing conditions can aid in successfully reproducing
published syntheses. These values are not always obvious
(such as the Bi/Fe ratio), and so these successes reflect the
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utility of data-driven experimental design. Some syntheses were
still irreproducible after substituting missing values, high-
lighting the importance of reporting these vital conditions for
replication, namely the concentration of the precursor solution
and the Bi/Fe ratio. Finally, new exploratory experiments were
inspired by visible gaps in the synthesis condition coverage of
the dataset. The results of these experiments highlight several
of the synthesis conditions in precursor solution preparation
that affect final phase purity, namely, the precursor
concentration, mixing conditions, as well as the inclusion of
citric acid as a chelating agent. These experiments represent an
example of how a text-mined dataset of synthesis conditions
and outcomes can be used to inspire new syntheses. Because it
was manually extracted and validated, our dataset can be
considered as a gold standard for future ML-based synthesis
learning tasks in this synthesis space or for automated text
extraction models.
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