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Introduction

A
dvances in machine learning (ML) are making a large
impact in many fields, including: artificial intelli-
gence,1 materials science,2,3 and chemical engineer-

ing.4 Generally, ML tools learn from data to find insights or
make fast predictions of target properties.5 Recently, ML is
also greatly influencing heterogeneous catalysis research6 due
to the availability of ML (e.g., Python Scikit-learn7, Tensor-
Flow8) and workflow management tools (e.g., ASE,9 Atom-
ate10), the growing amount of data in materials databases (e.g.,
Novel Materials Discovery Laboratory,11 Citrination,12 Mate-
rials Project,13 CatApp14), and algorithmic improvements.

New catalysts are needed for sustainable chemical produc-
tion, alternative energy, and pollution mitigation applications
to meet the demands of our world’s rising population. It is a
challenging endeavor, however, to make novel heterogeneous
catalysts with good performance (i.e., stable, active, selective)
because their performance depends on many properties: com-
position, support, surface termination, particle size, particle
morphology, and atomic coordination environment.15 Addi-
tionally, the properties of heterogeneous catalysts can change
under reaction conditions through various phenomena such as
Ostwald ripening, particle disintegration, surface oxidation,
and surface reconstruction.16 Many heterogeneous catalyst
structures are disordered or amorphous in their active state,
which further complicates their atomic-level characterization
by modeling and experiment.17

Computational modeling using quantum mechanical (QM)
methods such as density functional theory (DFT)18,19 can
accelerate catalyst screening by enabling rapid prototyping

and revealing active sites and structure-activity relations. The
high computational cost of QM methods, however, limits the
range of catalyst spaces that can be examined. Recent progress
in merging ML with QM modeling and experiments promises
to drive forward rational catalyst design.20 Therefore, it is
timely to highlight the ability of ML tools to accelerate hetero-
geneous catalyst research. A key question we aim to address
in this perspective is how machine learning can aid heteroge-
neous catalyst design and discovery.

ML has been used in catalysis research since at least the
1990s. Early studies used neural networks to correlate catalyst
physicochemical properties and reaction conditions with mea-
sured catalytic performance,21,22 but these studies were limited
in the number of systems considered. Recently, ML has been
applied to the high-throughput screening of heterogeneous
catalysts and found to be predictive and applicable across a
broad space of catalysts. ML algorithms such as decision
trees, kernel ridge regression, neural networks, support vector
machines, principal component analysis, and compressed sens-
ing can help create predictive models of catalyst target proper-
ties, which are typically figures of merit corresponding to
stability, activity, selectivity.23–25

In this perspective, we discuss various areas where ML is
making an impact on heterogeneous catalysis research. ML is
also aiding homogeneous catalysis research and shares many
similarities (and differences) with ML for heterogeneous catal-
ysis, but this discussion is beyond the perspective’s scope (for
interested readers, see Ref. 26–28). Here, we emphasize the
ability of ML combined with QM calculations to speed-up the
search for optimal catalysts in combinatorial large spaces,
such as alloys. ML-derived interatomic potentials for accurate
and fast catalyst simulations will also be assessed, as well as
the opportunity for ML to help find descriptors of catalyst per-
formance in large datasets. The use of ML to aid transition
state search algorithms (to compute reaction mechanisms) will
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also be discussed. Last, an outlook on future opportunities for
ML to assist catalyst discovery will be given.

Impact of Machine Learning on
Heterogeneous Catalysis

We first note a few general details about machine learning.
For supervised learning of a dataset, a matrix of input features
(i.e., properties from which the machine can learn) is con-
structed and a learning algorithm identifies an analytical or
numerical relationship between this matrix and the target
property of interest. Typically, in physical sciences, it is desir-
able that this model has an interpretable form. Caution must
be taken to avoid generating flawed models because of poor
input feature construction or overfitting the model to the train-
ing data. In contrast to supervised learning, unsupervised
learning algorithms (such as k-means clustering or principal
component analysis) find patterns and regularities in data with-
out a target property.

A general workflow for building ML models of catalysts is
shown in Figure 1. First a dataset containing various catalysts
must be created. Next, each catalyst is described by its features
(often called fingerprints or representations), which can consist
of electronic-structure properties, physical properties, and
atomic properties. Importantly, the features should capture the
important physicochemical properties of the materials, should
be much easier to compute than the target property, and
uniquely define each material. Then machine learning tools
can be used to find patterns, build models, or discover descrip-
tors that map the features describing the catalyst to their fig-
ures of merit.

We will discuss both supervised and unsupervised learning
algorithms applied to heterogeneous catalysis problems in this
perspective. Several approaches are described that include a
structural representation (e.g., SOAP29,30) to produce an accu-
rate model of catalyst properties, whereas other data analytics
methods such as SISSO aim to search over a vast space of pos-
sible features to find the most accurate and meaningful
descriptor.31 Subgroup discovery extends this feature selection
process to identify the ideal features or descriptors for subpo-
pulations of catalyst data. Such ML tools (among many others
discussed in the following sections) are poised to become

routine methods in the physical sciences for building predic-
tive models and understanding data.

Active site determination and catalyst screening

The conventional route to discover and develop catalysts
with desired properties has been through experimental testing
and involves candidate materials being synthesized and tested
a few samples at a time, which is costly and time consuming.
High-throughput screening of combinatorial catalyst libraries
can aid catalyst discovery by helping to search through vast
design spaces.32 Machine learning can assist screening efforts
by helping to navigate the catalyst search space by finding cor-
relations or by speeding up calculations of the target property.

Researchers have applied ML on experimental data to train
models that predict catalytic performance of materials based
on their synthesis conditions and composition as model input
features.33,34 Such ML approaches can guide the synthesis of
better catalysts, but experimental catalysis data is often limited
and hard to obtain, which can lead to models that are not gen-
eralizable across diverse chemical spaces. QM modeling can
more easily generate larger datasets than experiments or fill in
gaps in experimental data, from which ML models can then be
trained.

One widely studied class of catalysts that present a combi-
natorial challenge is alloy nanoparticles, which are used in
applications such as fuel cells,35 biomass conversion,36 and
natural gas conversion37 due to their compositional tunability
and potential multifunctionality.38 It is challenging to identify
optimal catalyst compositions and active sites on alloy cata-
lysts because of the many possible unique structures (e.g., sur-
face facets and adsorbate configurations) due to their
compositional diversity and reduction in symmetry (relative to
monometallic nanoparticles). Despite the many possible sur-
face facets on alloy catalysts and their potential contributions
to catalyst performance, researchers typically model only a
few stable facets, usually the (111), (100), or (110) because of
the computational expense of modeling every surface. Yet, the
active sites contributing the most to the observed rate are often
not sites on the most stable surface,17,39 so modeling only a
few stable facets could misrepresent the catalytically active
surface.

Recent works show ML can be integrated with QM methods
to overcome the computational bottleneck of pure QM

Figure 1. (0) A heterogeneous catalyst sample within some larger dataset (catalyst space)—containing catalysts with differ-
ent composition, support type, and particle size—can be described by its (1) features within some feature space,
which is made up of electronic-structure properties, physical properties, and atomic properties. Machine learning
algorithms can (2) build models or find descriptors that map the features describing the catalysts to their figures
of merit. Figure adapted from Ref. 24 with permission from Elsevier.
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modeling strategies and enable accurate screening of large
alloy catalyst spaces.40–42 For example, using Bayesian linear
regression (trained on DFT-computed adsorption energies) and
Brønsted2Evans2Polanyi relations (which relates the
enthalpy of reaction to the activation energy),43 the effects of
alloy composition, nanoparticle size, and surface segregation
on NO decomposition turnover frequency (TOF) by
Rh(12x)Aux nanoparticles were explored, Figure 2.40 SOAP
(smooth overlap atomic position) was used as the kernel in
their Bayesian linear regression scheme to approximate the
similarity between two local atomic environments based on
overlap integrals of three-dimensional atomic distributions.29,30

After the SOAP-based model is trained, it enables quick esti-
mates of reaction energetics on alloy nanoparticles using only
energetic data of single crystal surfaces, Figure 2A. This analy-
sis suggests 2 nm Rh(12x)Aux particles with x ! 0.33 have a
high TOF, with the most active sites being at the nanoparticle
corners, Figure 2B, whereas larger nanoparticles are less
active. This work shows kinetic analysis using energetics esti-
mated by ML can be useful to predict size-dependent activity
of alloy nanoparticles with reduced computational expense.

Neural networks (NNs) and linear scaling relations44 (relat-
ing adsorption energies of similar species) were used to screen
>1000 bimetallic alloys as methanol electrooxidation catalysts
for direct methanol fuel cells.41 The NNs were trained on
"1000 DFT-computed CO and OH adsorption energies on
(111)-terminated alloy surfaces using the electronic properties
of the metal surface site (e.g., d-band center45) and the physi-
cal properties of the substrate (e.g., atomic radius) as NN input
features. The NNs identified several compositions of transition
metal alloys (e.g., Pt/Ru, Pt/Co, Pt/Fe) and structural motifs
that exhibit lower theoretical limiting potentials (defined as
the minimal potential where all reaction steps are downhill in
free energy) than Pt, which agrees with experiments.

A combined DFT and NN iterative approach was used to
exhaustively screen NixGay bimetallic surfaces for CO2 reduc-
tion activity.46 CO binding energy was chosen as the target
property for screening active facets because surfaces that
weakly adsorb CO are linked to greater activity for CO2

reduction.47 The NixGay system is difficult to model using
DFT alone because each composition can exhibit several sta-
ble structures at reducing potentials, with each structure hav-
ing dozens of possible exposed surface facets. The use of a
NN to accelerate the search process reduced the number of
DFT calculations by an order of magnitude and enabled the
study of four bulk compositions (Ni, NiGa, Ni3Ga, and
Ni5Ga3), 40 surface facets, and 583 unique adsorption sites for
CO2 reduction activity.

Ultimately, NiGa(210), NiGa(110), and Ni5Ga3(021) were
predicted to be among the most active surface facets for CO2

reduction. These active facets all display active Ni atoms sur-
rounded by surface Ga atoms, which rationalizes experimental
reports of NixGay activity.48 Some of these active facets could
have been missed using conventional, nonexhaustive, search
strategies.

Surface phase diagrams help to determine catalyst active
sites and reaction mechanisms because they reveal the
expected composition and surface phase as a function of tem-
perature, pressure, potential, or dopant concentration.49 Sur-
face phase diagrams are difficult to obtain by experiment, thus
QM modeling is advantageous to predict stable surface struc-
tures under reaction conditions. A DFT-trained Gaussian pro-
cess regression (GPR) model was shown to more quickly and
comprehensively predict catalyst surface phase diagrams than
conventional intuition-based approaches.42 Specifically, rapid
construction of Pourbaix diagrams, which map surface phases
as a function of applied potential and pH, was shown for IrO2

and MoS2 surfaces under conditions relevant to the electroca-
talytic reduction of N2 to NH3.42 The GPR model, trained on
20–30 adsorbate configurations computed using DFT, esti-
mates the probability that a given set of surface coverages con-
tains configurations relevant to the Pourbaix-stable phase.42

The computational cost to obtain Pourbaix diagrams of IrO2

and MoS2 was reduced by three times using the GPR model
compared with manually trying adsorbate configurations
informed by physical intuition. Unintuitive and stable surface
coverages were identified using GPR that were missed using
approaches based on physical intuition.

Figure 2. (A) Bayesian linear regression scheme, using SOAP as the kernel, to predict energetics of reaction intermediates on
truncated octahedral Rh(12x)Aux nanoparticle catalysts. The nanoparticle and reaction intermediate energetics are
estimated based on training data of adsorbate binding energies on single crystal surfaces obtained using density
functional theory (DFT) calculations. Ek is the energy of the kth reaction intermediate on the nanoparticle, Kkj is the
SOAP kernel, and wj are the regression coefficients. (B) Predicted turnover frequencies (TOF) per surface site at
500 K for the direct decomposition of NO on Rh(12x)Aux nanoparticles with diameters between 2 and 5 nm, com-
puted from the energetics of the Bayesian linear regression, Brønsted2Evans2Polanyi relations, and microkinetic
modeling. The active site structure, which are the corners of the Rh(12x)Aux alloy nanoparticle, is shown inset. Oxy-
gen atom 5 Red sphere; Rhodium atom 5 Silver sphere; Gold atom 5 Brown sphere. Nitrogen and NO are not
shown. Adapted with permission from Ref. 40. Copyright 2017 American Chemical Society.
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These studies show ML combined with QM modeling can
enable the systematic screening of large catalyst spaces and
give unexpected solutions to complex catalysis problems. ML
permits exhaustive searches of a given design space with dra-
matically reduced computational expense compared with QM
calculations, revealing both intuitive and unintuitive informa-
tion. Such ML approaches are expected to be adopted by the
community to help identify active catalyst facets and alloy
compositions.

Finding descriptors and patterns in catalysis data

A descriptor is a computationally inexpensive surrogate
model for some more complicated figure of merit,50 such as
stability, activity, and selectivity in heterogeneous catalysis.
The most prevalent descriptor in heterogeneous catalysis is the
energy of the d-band center with respect to the Fermi level,45

which is connected to the interaction between adsorbate
valence states and the d-states of a transition metal surface.
Consequently, molecule adsorption energies on transition
metal surfaces linearly correlate with the d-band center, which
can then be related to catalyst activity through linear scaling
relations.45 Other catalyst descriptors51 derived by intuition
exist such as the “generalized” coordination number52 or
“orbital-wise” coordination number,53 which can estimate the
chemical reactivity of nanoparticle catalysts by rationally
counting the atoms (or their orbital overlap) that influence the
electronic structure of each catalyst site. Such descriptors are
powerful but have limitations in accuracy and generalizability.
For example, very electronegative adsorbates on substrates
with a nearly filled d-band (e.g., OH adsorption on platinum
alloys) are a family of common adsorbate-substrate systems
that are not well described by the d-band model.54

More accurate and generalizable descriptors to predict cata-
lyst figures of merit may exist but remain undiscovered. ML
tools for descriptor identification could surpass human intui-
tion to find new, potentially superior, descriptors. It is also
possible ML tools could combine known descriptors in unin-
tuitive ways to produce a single more accurate descriptor. To
find catalyst descriptors using ML, the set of potential features
from which the descriptor is learned must contain the chemis-
try and physics relevant to the target property of interest.
Thus, generating or constructing relevant catalyst features for
a given problem is critical.

Using catalyst features that do not require QM calculations
can accelerate catalyst prediction and screening. For example,
although the d-band center predicts adsorption energies on
metal surfaces, its computation requires QM (typically, DFT)
calculations. A kernel ridge regression* (KRR)55 model was
trained to predict CO adsorption energy on 263 alloy surfaces
using the d-band width of the muffin-tin orbital and the geo-
metric mean of electronegativity as features, which both can
be obtained without QM calculations.56 After training, this
KRR model was used to screen CO2 reduction reaction core-
shell catalysts, with Cu3Zr@Cu and Cu3Y@Cu predicted to be
more active than Au-based catalysts. Another study used gra-
dient boosting regression to quickly estimate the d-band center
for 11 monometallic and 110 bimetallic surfaces based on

tabulated features such as the density and the enthalpy of
fusion of each metal.57 Because adsorption energies are related
to catalyst activity through linear scaling relations, rapidly pre-
dicting adsorption energies can yield catalyst activity trends
on metal and alloy surfaces.

Although nonlinear regression models are predictive and
can consist of physically motivated features,58 a common criti-
cism is their relative lack of physical interpretability due to
their high dimensionality and nonlinearity. Yet, sensitivity
analysis can be applied to random forests or neural networks
to estimate the relative importance of features in the
model.41,59 Nonetheless, if the goal is to understand the chemi-
cal mechanism of catalysts instead of simply fitting data, then
low dimensional models are desirable.60

Compressed sensing based feature selection methods can
give linear, low-dimensional models (i.e., the number of dimen-
sions is just the number of terms in a linear expansion), which
offers a robust and fast approach to find simple descriptors of
materials to predict target properties.50,61 In particular, a
recently created algorithm called Sure Independence Screening
and Sparsifying Operator (SISSO) finds low-dimensional
descriptors out of a huge feature space (billions of features)
within the framework of compressed-sensing based dimension-
ality reduction.31 SISSO has been used by some of the authors
to find an improved descriptor to predict the stability of perov-
skite oxide and halide materials using an experimental dataset.62

The linearity and simplicity of the descriptors found by SISSO
can make them more transferable to materials outside of the
training set than nonlinear models, which are prone to overfit-
ting. Although not currently applied to an example relevant for
catalysis, SISSO is expected to aid the discovery of descriptors
that map catalyst features to their figures of merit.

Data mining methods are powerful ML tools to find nontriv-
ial insights in big data and to help build predictive models.
Efforts have been made to integrate data mining methods with
heterogeneous or homogeneous catalysis data to promote cata-
lyst characterization and to build quantitative structure-
property relationship models.63–67 An early study used data
mining to help make predictive models of cyclohexene epoxi-
dation yield by mesoporous titanium-silicate catalysts.63 In
this study, principal component analysis† (PCA) was used to
extract spectra features from X-ray diffraction (XRD) charac-
terization data of 63 catalysts. The composition of the starting
synthesis gel and XRD spectra features were used as NN
inputs to classify the catalyst epoxide yield. XRD spectra fea-
tures markedly improved catalyst performance predictions
compared with using only synthesis parameters.

Besides helping to extract predictive features, data mining
can find trends in catalytic reactions.64,68 For example, selec-
tive hydrogenation of 5-ethoxymethylfurfural was examined
over 96 bimetallic catalysts and 16 metal catalysts supported
on either SiO2 or Al2O3.64 Each catalyst was tested in two sol-
vents (diethyl carbonate, 1,4-dioxane) and three temperatures.
Using PCA, major trends in the dataset regarding the impact
of the support, temperature, solvent, and metal for the hydro-
genation of 5-ethoxymethylfurfural were found; for example,
SiO2-supported catalysts typically have much lower activity
than Al2O3-supported catalysts and higher conversions are

*KRR is a nonlinear version of ridge regression similar to the least squares procedure,
except it penalizes the sizes of the regression coefficients. The type of nonlinearity in
KRR is determined by the choice of kernel.

†PCA is a method that transforms a number of features into a smaller number of uncor-
related features called principal components, which best separate the data points.
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obtained using diethyl carbonate as a solvent compared to 1,4-
dioxane.

Data mining found strong correlations between bulk mate-
rial properties of elemental metals and their experimental
hydrogen evolution reaction (HER) kinetics in acid. A dataset
containing 38 elemental metals and 50 bulk materials proper-
ties were mined for correlations with HER exchange current
densities (j0) using the Reshef algorithm.66 Interestingly, the
melting point and bulk modulus of the metals gave correla-
tions slightly stronger than those of the d-band center for HER
activity, and these correlations remained true for the promising
NiMo HER electrocatalyst and a previously untested MoSi2
catalyst, Figure 3. These case studies show that data mining
tools can find hidden patterns in experimental catalysis data
and suggest regions in “catalyst space” where improved cata-
lysts are found.

Most ML applications in catalysis infer a global prediction
model for some property of interest, but the underlying

mechanism for a desired catalyst property could differ for dif-
ferent catalysts within a large amount of data. Consequently, a
global model fitted to the entire dataset may be difficult to
interpret and incorrectly describe the physical mechanisms.
One could instead partition the dataset into chemically similar
catalyst subgroups via clustering algorithms and train a sepa-
rate model on each subgroup, which can increase prediction
accuracy by reducing the different physicochemical effects
that each ML model must describe. As an alternative, local
pattern search algorithms such as subgroup discovery (SGD)
could be used to automatically find and describe subgroups.69

SGD aims to find and describe local subpopulations in
which the target property takes on a useful distribution.70 The
SGD algorithm consists of three main parts: (1) the use of a
description language for finding subgroups within a given pool
of data; (2) the definition of utility functions that formalize the
interestingness of subgroups; and (3) the use of a search algo-
rithm to find selectors that describe interesting subgroups. One
of the authors has shown SGD can be used to find descriptors
that predict the stable crystal structure for the 82 octet AB
binary materials, as well as find patterns and correlations
between structural and electronic properties of gold clusters
(Au5–Au14).71 Unlike global modeling algorithms, SGD could
identify potentially unintuitive groupings of catalysts, which
(a) enables understanding of physicochemical similarity
between systems, and (b) can be used to improve predictive
models.

Machine-learned interatomic potentials for catalyst
simulation

Modeling catalysts under reaction conditions using QM is
computationally expensive because the cost of these
approaches scales unfavorably with system size, thus QM
applications remain limited to small catalytic systems (hun-
dreds of atoms). To overcome this size constraint, ML is being
used to develop interatomic potentials (mathematical functions
for computing the potential energy of a system of atoms)
trained with data generated by QM, which estimate interaction
energies with increased numerical efficiency compared with
QM methods.72 Therefore, these machine-learned interatomic
potentials (MLPs) can speed-up simulations by several orders
of magnitude while keeping comparable accuracy to QM
methods.73 The small computational cost of MLPs compared
with QM methods promises to make them useful to catalytic
systems at extended length and time scales, and aid near-
exhaustive catalyst structure searches, see Figure 4.

After catalyst structures under operating conditions are
determined, mechanistic modeling and microkinetic simula-
tions can be performed to obtain insights and make catalyst
predictions, which can next be confirmed by catalyst synthesis,
characterization, and testing. Further advances in MLPs are
needed, however, to fulfill the vision outlined in Figure 4. In
the following section, we will discuss some progress, chal-
lenges, and opportunities for MLPs to model catalysis, as well
as some ambitious MLPs, which may one day circumvent the
need for traditional QM modeling of catalysts.

MLPs have undergone great advances in recent years, which
is laying the foundation for MLP applications to catalysis
studies. For example, the first molecular dynamics simulation
with a machine-learned density functional (trained on DFT

Figure 3. Log(j0) for the hydrogen evolution reaction in acid
vs. (A) melting point and (B) bulk modulus for the
elemental metals. Gray regions indicate optimum
ranges of the melting point and bulk modulus.
NiMo and MoSi2 (green circles) follow the melting
point and bulk modulus correlations of the ele-
mental metals. Adapted from Ref. 66 with permis-
sion. Copyright 2013 American Chemical Society.
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reference data) was used to simulate intramolecular proton
transfer within malonaldehyde.74 MLPs made of deep tensor
neural networks can perform highly accurate molecular
dynamics simulations of small molecules, classify the relative
stability of aromatic rings, as well as give insights on local
molecular chemical potentials.75

The accuracy of NN interatomic potentials are competitive
against popular force fields such as ReaxFF.76,77 ReaxFF is a
bond order-based force field that can predict bond formation/
breaking reactions. The Behler–Parrinello neural network
(BPNN) potential, which uses symmetry functions to represent
the chemical environment of each atom in the system, was
benchmarked against ReaxFF for predicting the equation of
state, vacancy formation and diffusion barriers for bulk gold,
surface diffusion and slipping barriers for gold surfaces, and
the most stable gold nanocluster structures for Au6 and
Au38.76 BPNN was fitted to 9734 DFT calculations (using
PBE) and gave an RMSE of 0.021 eV/atom on the validation
set, whereas ReaxFF had an RMSE of 0.136 eV/atom over the
entire dataset.76 Although able to achieve high accuracy, one

drawback of NN-based MLPs is their computational expense
among potentials, which is 1–2 orders of magnitude higher
than ReaxFF and classical interatomic potentials because of
the more complex representation of the system that is used in
combination with the NN.76,78

MLPs are being increasingly used to model catalyst dynam-
ics and predict stable surfaces and structures under reaction
conditions. Dynamics in catalysis are so ubiquitous that cata-
lysts have been referred to as “living” systems. For example,
the distribution and concentration of vacancy sites in catalyst
supports can change under reaction conditions and impact cat-
alytic performance.79,80 Ostwald ripening (the growth of larger
nanoparticles from smaller nanoparticles), or nanoparticle
disintegration into single atoms are also common dynamic
phenomena that can change nanoparticle activity and selectiv-
ity.81,82 A NN interatomic potential combined with grand
canonical Monte Carlo (GCMC) predicted the surface cover-
age of oxygen atoms on a Pd(111) surface as a function of
temperature and pressure.83 Additionally, the NN potential
was used with nudged elastic band calculations to predict the

Figure 4. Machine-learned interatomic potentials, trained on high-quality data generated by quantum mechanical (ab initio)
methods, can accelerate catalyst structure searches and simulate greater time and length scales. After stable cata-
lyst structures under operating conditions are determined, mechanistic analysis and microkinetic simulations can
be performed to extract catalyst design insights and make catalyst predictions, which can next be verified by cata-
lyst synthesis, characterization, and testing. Data of the synthesized catalyst can be obtained by ab initio calcula-
tions to close the workflow cycle.
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minimum energy pathway for oxygen adatom diffusion on
Pd(111) in the dilute limit.

One major challenge is to determine stable catalyst struc-
tures under reaction conditions, for example, small nanoclus-
ters can adopt a diverse array of unintuitive structures at
elevated temperatures.84 Supported nanoclusters covered with
reactants could adopt a stable geometry or an ensemble of
geometries different than those covered with reaction inter-
mediates or products.84 MLPs could help determine supported
nanocluster geometries in the presence of adsorbates through
combination of structure-searching methods such as genetic
algorithms, basin-hopping and GCMC.85–90

Fast and predictive reactive MLPs would be indispensable
for simulating challenging systems such as catalysis at liquid/
solid interfaces, for which a detailed solvent description is
required (e.g., solvent can participate directly in reactions and
modify the surface coverage of intermediates) but difficult to
achieve in practice.91 MLPs have been used to study structural
and dynamical properties of interfacial water at low-index
copper surfaces, including water probability densities, molecu-
lar orientations, and hydrogen-bond lifetimes.92 Combining a
MLP with Monte Carlo enabled the characterization of the
equilibrium surface structure and composition of bimetallic
Au/Cu nanoparticles in aqueous solution, which are relevant
CO2 reduction catalysts.93,94 Future work involving QM/MLP
methods to simulate the active site with high fidelity (using
QM) and the rest of environment (using a MLP) would be
valuable to model larger catalytic systems and reactions in
solution.

One drawback of MLPs is the large amount of data typically
needed to achieve predictive accuracy, which often requires
many thousands of geometry configurations for training.
Recently it was shown, however, that gradient-domain
machine learning, which uses exclusively atomic gradient
information instead of atomic energies, can construct accurate
MLPs from only 1000 geometries obtained from molecular
dynamics trajectories (e.g., for benzene, toluene, ethanol, and
aspirin).95 This approach enables molecular dynamics simula-
tions with DFT accuracy for small molecules three orders of
magnitude faster than simulations using explicit DFT calcula-
tions. Another strategy is to directly machine learn energy
functionals (within the framework of Kohn-Sham DFT),
which should yield large savings in computer time and allow
larger catalytic systems to be studied.74,96

Many thousands of scientific articles published each year
use QM methods, so these types of machine learning works
are exciting because they promise to allow the construction of
fast potentials with QM accuracy to simulate catalyst systems.
MLPs have shown success to examine molecules, metal surfa-
ces containing adsorbates, and nanoparticles. Yet progress is
needed to increase the transferability and generalizability of
MLPs, especially for modeling bond-breaking reactions across
full catalytic cycles. Developing MLPs to model reactions
across full catalytic cycles is challenging because: (1) it is
hard to obtain sufficient training data of relevant bond break-
ing reactions and (2) it is more difficult for MLPs to interpo-
late bond breaking events than nonbond-breaking events due
to the greater change in the chemical properties of a given sys-
tem. Another challenge to overcome is the difficulty in train-
ing accurate MLPs for condensed-phase systems containing

above four different elements (because of the exponentially
growing size of configuration space with the number of ele-
ments). Some of the challenges regarding training MLPs will
be alleviated with larger training datasets of accurate QM data
becoming more available in data repositories, and from
improvements in approaches to understand uncertainty in
model predictions.97 Progress in data sharing and data reuse
techniques (e.g., transfer learning)98 would also promote usage
of MLPs to study catalysts via easier access to training data.
With the growing availability of software for machine learning
potentials such as AMP,99 PROPhet,100 and TensorMol101 it is
evident that MLPs will keep being extended.

Accelerating the discovery of catalytic mechanisms

Designing heterogeneous catalysts for a specific reaction
requires knowledge of the rate-controlling transition states and
intermediates.102 To understand the key elementary steps and
surface abundance intermediates with atomistic detail, the sta-
ble structures and the corresponding transition states (TS) that
connect them must be known. On the potential energy surface
(PES), stable reactant molecules, product molecules, and reac-
tion intermediates are in local or global minima. Catalyst
geometry optimization methods to find minima usually
involve Conjugate Gradient or Quasi-Newton Raphson meth-
ods. A more difficult problem than finding minima is to locate
TS structures on heterogeneous catalysts (e.g., bond breaking
reactions of adsorbates), which correspond to first-order saddle
points on the PES.

TS searching algorithms have aided many computational
mechanistic analyses of heterogeneous catalysts. Some of
these algorithms are: the Cerjan-Miller algorithm, Climbing-
Image Nudged Elastic Band, Dimer method, Force Reversed
method, Growing String, and the Single-Ended Growing
String.103–108 Once the transition states for elementary steps
are known, catalyst activation free energy barriers and rate
constants can be computed.109 Thus, creating more efficient
algorithms to navigate the PES and locate transition states is
important to help understand catalytic reactions.

ML can accelerate TS searches and minimum energy path
(MEP) finding algorithms. The MEP is the lowest-energy path
connecting two minima on the PES (i.e., the path of maximum
statistical weight in a system at thermal equilibrium), thus it is
kinetically relevant. To accelerate MEP and TS search calcula-
tions, a DFT-trained NN was used to estimate the PES for
which nudged elastic band (NEB) computations were carried
out.110 Another study used Gaussian process regression (GPR)
to speed-up NEB searches to find MEPs for a benchmark sys-
tem involving 13 rearrangement transitions of a heptamer
island on a model solid surface.111 These ML approaches are
surely going to accelerate calculations of MEPs for heteroge-
neous catalytic processes involving small adsorbates. How-
ever, better computational scaling of the GPR calculations
will be needed to accelerate MEP calculations of larger sys-
tems. Looking ahead, we believe the future of TS and MEP
path searching lies in combining ML with automated reaction
path search methods.112,113 Such approaches would create the
possibility of exhaustively searching heterogeneous catalyst
reaction pathways in an automated fashion to find the relevant
thermodynamic and kinetic information of the full catalytic
cycle.
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ML approaches also show promise to aid mechanistic stud-
ies by helping to address reaction network complexity in a sys-
tematic fashion.114,115 QM modeling can yield insights into
reaction mechanisms and improved catalysts for reactions of
small molecules, but it is typically computationally prohibitive
for complex reaction networks involving large molecules. As
a step toward enabling accurate and fast computational predic-
tions of reaction networks, an optimization framework using
GPR was applied to study the reaction of syngas (CO 1 H2)
over Rh(111) catalysts under experimentally relevant operat-
ing conditions (573 K and 1 atm of gas phase reactants), Fig-
ure 5.114 A reaction network for syngas conversion over
Rh(111) is shown in Figure 5A, which has hundreds of spe-
cies, hundreds of possible reactions, and more than two thou-
sand possible reaction pathways to consider. Starting from a
few DFT energies of the intermediates in the reaction network,
a computationally inexpensive GPR scheme was used to pre-
dict the free energy for all intermediates in the reaction net-
work. TS linear scaling relations were exploited to estimate
the activation energies for all reactions in the network, and a
simple classifier was used to select the potential rate-limiting
steps. Through an iterative GPR model refinement process,
where only potential rate-limiting steps were further analyzed
using the climbing-image nudged elastic band algorithm, a
probable reaction network was identified, Figure 5B.

The most probable reaction mechanism was found using
DFT to calculate only 5% of transition state energies and 40%
of intermediate species energies, and the mechanism matches

the experimentally observed selectivity of Rh(111) toward
making acetaldehyde. For analyzing more complex reaction
pathways, advances in graph theory-based regression
approaches can be used to quickly estimate needed thermo-
chemistry and activation energies.115 This example once again
shows that ML can make more efficient use of CPU time by
leveraging catalyst data already obtained by QM methods.

Opportunities and Prospects

Machine learning is a valuable addition to a researcher’s
toolkit for generating knowledge about heterogeneous cata-
lysts. ML combined with computational modeling or experi-
ments is creating avenues for rapidly screening heterogeneous
catalysts, finding descriptors of catalyst performance, and aid-
ing catalyst synthesis. A major application of ML in catalysis
is to train predictive models based on quantum mechanical
data to enable the systematic screening of large catalyst spaces
for adsorbate binding strength and activity. ML approaches
can help identify active catalyst facets and alloy compositions.
Additionally, applications of machine-learned interatomic
potentials promise to allow the simulation of catalytic systems
at larger length scales or longer time scales with high accu-
racy, albeit further methodological development is needed.
Other cutting-edge methods for descriptor identification such
as SISSO and subgroup discovery can search over a huge
space of possible features to find descriptors of catalyst stabil-
ity, activity, and selectivity.

Figure 5. (A) Reaction network for the reaction of CO 1 H2 (syngas) to CO2, water, methanol, acetaldehyde, methane, and eth-
anol, including surface intermediates (containing up to two carbon and two oxygen atoms). (B) The reduced reac-
tion network for CO 1 H2 reactivity on Rh(111) indicates acetaldehyde and CO2 are the major products, which is
confirmed by experiment. The reduction of the reaction network (A) to the reduced reaction network (B) is achieved
using a machine learning aided reaction network optimization framework. Oxygen atom 5 Red sphere; Rhodium
atom 5 green sphere; Carbon atom 5 Grey sphere; Hydrogen atom 5 white sphere. Figure adapted from Ref. 116.
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Literature on heterogeneous catalysis is mounting with
numerous catalysts being synthesized, characterized, and
tested for catalytic performance. Organizing all the generated
catalyst information in databases for storage, query, and shar-
ing is key to fully exploit the power of ML to construct predic-
tive models and to find patterns in catalysis data. However,
manually extracting catalyst knowledge from published litera-
ture is tedious, time consuming, and can be error prone. Natu-
ral language processing and ML would allow automated text
and data extraction to uncover scientific insights from this
large body of catalysis information. This area is ripe to
develop for the catalysis community. Some advances on the
text-mining front have already been made in the chemistry116

and materials science communities.117,118 Tools are needed to
extract catalysis information such as kinetics, thermodynam-
ics, particle size, operating temperature, and synthesis condi-
tions.68,119 Being able to extract large amounts of catalyst
information to fill databases would create routes for innovation
through data mining studies.

Another area ready for further innovation is machine learn-
ing for catalyst imaging (e.g., scanning transmission electron
microscopy, scanning tunneling microscopy, and atomic force
microscopy) and spectroscopic (e.g., infrared, X-ray absorp-
tion near edge structure) analysis. For example, ML could
help generate higher quality images or improved spectra with
decreased sampling time, or help interpret experimental spec-
tra.120,121 Importantly, imaging and spectroscopic data con-
tains quantitative structural and functional information, albeit
with high complexity. ML models that map imaging and spec-
troscopic data to structure-property information would be
valuable for catalyst understanding and help link models and
experiments.122,123 Recently, a neural network converted
XANES spectra of Pt nanoparticles into information about
their atomic-coordination environment to assist with their
structural characterization.123 The neural network was trained
on Pt nanoparticle XANES simulations and validated against
experiment. This result suggests rapid spectroscopic determi-
nation of catalyst morphology is becoming closer to reality
through the aid of ML.

From accelerating catalyst active site determination to find-
ing descriptors and patterns in catalysis data, in recent years
machine learning has proven to be versatile and useful for aid-
ing heterogeneous catalyst understanding, design, and discov-
ery. The power of machine learning has just begun to be
exploited in heterogeneous catalysis research, with much
room remaining for advancement (e.g., text mining, image
analysis, machine-learned interatomic potentials, and reaction
path search algorithms). Further development of machine
learning software, algorithms, and techniques promises to aid
heterogeneous catalysis design and discovery in the years to
come.
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