Introduction

Advances in machine learning (ML) are making a large impact in many fields, including: artificial intelligence,1 materials science,2,3 and chemical engineering.4 Generally, ML tools learn from data to find insights or make fast predictions of target properties.5 Recently, ML is also greatly influencing heterogeneous catalysis research6 due to the availability of ML (e.g., Python Scikit-learn,7 Tensor-Flow8) and workflow management tools (e.g., ASE,9 Atom-at9e10), the growing amount of data in materials databases (e.g., Novel Materials Discovery Laboratory,11 Citrination,12 Materials Project,13 CatApp14), and algorithmic improvements.15

New catalysts are needed for sustainable chemical production, alternative energy, and pollution mitigation applications to meet the demands of our world’s rising population. It is a challenging endeavor, however, to make novel heterogeneous catalysts with good performance (i.e., stable, active, selective) because their performance depends on many properties: composition, support, surface termination, particle size, particle morphology, and atomic coordination environment.15 Additionally, the properties of heterogeneous catalysts can change under reaction conditions through various phenomena such as Ostwald ripening, particle disintegration, surface oxidation, and surface reconstruction.16 Many heterogeneous catalyst structures are disordered or amorphous in their active state, which further complicates their atomic-level characterization by modeling and experiment.17

Computational modeling using quantum mechanical (QM) methods such as density functional theory (DFT)18,19 can accelerate catalyst screening by enabling rapid prototyping and revealing active sites and structure-activity relations. The high computational cost of QM methods, however, limits the range of catalyst spaces that can be examined. Recent progress in merging ML with QM modeling and experiments promises to drive forward rational catalyst design.20 Therefore, it is timely to highlight the ability of ML tools to accelerate heterogeneous catalyst research. A key question we aim to address in this perspective is how machine learning can aid heterogeneous catalyst design and discovery.

ML has been used in catalysis research since at least the 1990s. Early studies used neural networks to correlate catalyst physicochemical properties and reaction conditions with measured catalytic performance,21,22 but these studies were limited in the number of systems considered. Recently, ML has been applied to the high-throughput screening of heterogeneous catalysts and found to be predictive and applicable across a broad space of catalysts. ML algorithms such as decision trees, kernel ridge regression, neural networks, support vector machines, principal component analysis, and compressed sensing can help create predictive models of catalyst target properties, which are typically figures of merit corresponding to stability, activity, selectivity.23–25

In this perspective, we discuss various areas where ML is making an impact on heterogeneous catalysis research. ML is also aiding homogeneous catalysis research and shares many similarities (and differences) with ML for heterogeneous catalysis, but this discussion is beyond the perspective’s scope (for interested readers, see Ref. 26–28). Here, we emphasize the ability of ML combined with QM calculations to speed-up the search for optimal catalysts in combinatorial large spaces, such as alloys. ML-derived interatomic potentials for accurate and fast catalyst simulations will also be assessed, as well as the opportunity for ML to help find descriptors of catalyst performance in large datasets. The use of ML to aid transition state search algorithms (to compute reaction mechanisms) will
also be discussed. Last, an outlook on future opportunities for ML to assist catalyst discovery will be given.

Impact of Machine Learning on Heterogeneous Catalysis

We first note a few general details about machine learning. For supervised learning of a dataset, a matrix of input features (i.e., properties from which the machine can learn) is constructed and a learning algorithm identifies an analytical or numerical relationship between this matrix and the target property of interest. Typically, in physical sciences, it is desirable that this model has an interpretable form. Caution must be taken to avoid generating flawed models because of poor input feature construction or overfitting the model to the training data. In contrast to supervised learning, unsupervised learning algorithms (such as k-means clustering or principal component analysis) find patterns and regularities in data without a target property.

A general workflow for building ML models of catalysts is shown in Figure 1. First a dataset containing various catalysts must be created. Next, each catalyst is described by its features (often called fingerprints or representations), which can consist of electronic-structure properties, physical properties, and atomic properties. Importantly, the features should capture the important physicochemical properties of the materials, should be much easier to compute than the target property, and uniquely define each material. Then machine learning tools can be used to find patterns, build models, or discover descriptors that map the features describing the catalyst to their figures of merit.

We will discuss both supervised and unsupervised learning algorithms applied to heterogeneous catalysis problems in this perspective. Several approaches are described that include a structural representation (e.g., SOAP29,30) to produce an accurate model of catalyst properties, whereas other data analytics methods such as SISSO aim to search over a vast space of possible features to find the most accurate and meaningful descriptor.31 Subgroup discovery extends this feature selection process to identify the ideal features or descriptors for subpopulations of catalyst data. Such ML tools (among many others discussed in the following sections) are poised to become routine methods in the physical sciences for building predictive models and understanding data.

Active site determination and catalyst screening

The conventional route to discover and develop catalysts with desired properties has been through experimental testing and involves candidate materials being synthesized and tested a few samples at a time, which is costly and time consuming. High-throughput screening of combinatorial catalyst libraries can aid catalyst discovery by helping to search through vast design spaces.32 Machine learning can assist screening efforts by helping to navigate the catalyst search space by finding correlations or by speeding up calculations of the target property.

Researchers have applied ML on experimental data to train models that predict catalytic performance of materials based on their synthesis conditions and composition as model input features.33,34 Such ML approaches can guide the synthesis of better catalysts, but experimental catalysis data is often limited and hard to obtain, which can lead to models that are not generalizable across diverse chemical spaces. QM modeling can more easily generate larger datasets than experiments or fill in gaps in experimental data, from which ML models can then be trained.

One widely studied class of catalysts that present a combinatorial challenge is alloy nanoparticles, which are used in applications such as fuel cells,35 biomass conversion,36 and natural gas conversion37 due to their compositional tunability and potential multifunctionality.38 It is challenging to identify optimal catalyst compositions and active sites on alloy catalysts because of the many possible unique structures (e.g., surface facets and adsorbate configurations) due to their compositional diversity and reduction in symmetry (relative to monometallic nanoparticles). Despite the many possible surface facets on alloy catalysts and their potential contributions to catalyst performance, researchers typically model only a few stable facets, usually the (111), (100), or (110) because of the computational expense of modeling every surface. Yet, the active sites contributing the most to the observed rate are often not sites on the most stable surface,17,39 so modeling only a few stable facets could misrepresent the catalytically active surface.

Recent works show ML can be integrated with QM methods to overcome the computational bottleneck of pure QM
modeling strategies and enable accurate screening of large alloy catalyst spaces.40–42 For example, using Bayesian linear regression (trained on DFT-computed adsorption energies) and Brønsted–Evans–Polanyi relations (which relates the enthalpy of reaction to the activation energy),44 the effects of alloy composition, nanoparticle size, and surface segregation on NO decomposition turnover frequency (TOF) by Rh\textsubscript{1−x}Au\textsubscript{x} nanoparticles were explored, Figure 2.40 SOAP (smooth overlap atomic position) was used as the kernel in their Bayesian linear regression scheme to approximate the similarity between two local atomic environments based on overlap integrals of three-dimensional atomic distributions.29,30 After the SOAP-based model is trained, it enables quick estimates of reaction energetics on alloy nanoparticles using only energetic data of single crystal surfaces, Figure 2A. This analysis suggests 2 nm Rh\textsubscript{1−x}Au\textsubscript{x} particles with \(x \approx 0.33 \) have a high TOF, with the most active sites being at the nanoparticle corners, Figure 2B, whereas larger nanoparticles are less active. This work shows kinetic analysis using energetics estimated by ML can be useful to predict size-dependent activity of alloy nanoparticles with reduced computational expense.

Neural networks (NNs) and linear scaling relations,44 (relating adsorption energies of similar species) were used to screen >1000 bimetallic alloys as methanol electrooxidation catalysts for direct methanol fuel cells.41 The NNs were trained on ∼1000 DFT-computed CO and OH adsorption energies on (111)-terminated alloy surfaces using the electronic properties of the metal surface site (e.g., d-band center),25 and the physical properties of the substrate (e.g., atomic radius) as NN input features. The NNs identified several compositions of transition metal alloys (e.g., Pt/Ru, Pt/Cu, Pt/Fe) and structural motifs that exhibit lower theoretical limiting potentials (defined as the minimal potential where all reaction steps are downhill in free energy) than Pt, which agrees with experiments.

A combined DFT and NN iterative approach was used to exhaustively screen Ni-Ga bimetallic surfaces for CO\textsubscript{2} reduction activity.46 CO binding energy was chosen as the target property for screening active facets because surfaces that weakly absorb CO are linked to greater activity for CO\textsubscript{2} reduction.47 The Ni-Ga\textsubscript{y} system is difficult to model using DFT alone because each composition can exhibit several stable structures at reducing potentials, with each structure having dozens of possible exposed surface facets. The use of a NN to accelerate the search process reduced the number of DFT calculations by an order of magnitude and enabled the study of four bulk compositions (Ni, NiGa, Ni\textsubscript{2}Ga, and Ni\textsubscript{3}Ga\textsubscript{2}), 40 surface facets, and 583 unique adsorption sites for CO\textsubscript{2} reduction activity.

Ultimately, NiGa(210), NiGa(110), and Ni\textsubscript{2}Ga(021) were predicted to be among the most active surface facets for CO\textsubscript{2} reduction. These active facets all display active Ni atoms surrounded by surface Ga atoms, which rationalizes experimental reports of Ni-Ga activity.58 Some of these active facets could have been missed using conventional, nonexhaustive, search strategies.

Surface phase diagrams help to determine catalyst active sites and reaction mechanisms because they reveal the expected composition and surface phase as a function of temperature, pressure, potential, or dopant concentration.29 Surface phase diagrams are difficult to obtain by experiment, thus QM modeling is advantageous to predict stable surface structures under reaction conditions. A DFT-trained Gaussian process regression (GPR) model was shown to more quickly and comprehensively predict catalyst surface phase diagrams than conventional intuition-based approaches.42 Specifically, rapid construction of Pourbaix diagrams, which map surface phases as a function of applied potential and pH, was shown for IrO\textsubscript{2} and MoS\textsubscript{2} surfaces under conditions relevant to the electrocatalytic reduction of N\textsubscript{2} to NH\textsubscript{3}.42 The GPR model, trained on 20–30 adsorbate configurations computed using DFT, estimates the probability that a given set of surface coverages contains configurations relevant to the Pourbaix-stable phase.42 The computational cost to obtain Pourbaix diagrams of IrO\textsubscript{2} and MoS\textsubscript{2} was reduced by three times using the GPR model compared with manually trying adsorbate configurations informed by physical intuition. Unintuitive and stable surface coverages were identified using GPR that were missed using approaches based on physical intuition.
These studies show ML combined with QM modeling can enable the systematic screening of large catalyst spaces and give unexpected solutions to complex catalysis problems. ML permits exhaustive searches of a given design space with dramatically reduced computational expense compared with QM calculations, revealing both intuitive and unintuitive information. Such ML approaches are expected to be adopted by the community to help identify active catalyst facets and alloy compositions.

Finding descriptors and patterns in catalysis data

A descriptor is a computationally inexpensive surrogate model for some more complicated figure of merit, such as stability, activity, and selectivity in heterogeneous catalysis. The most prevalent descriptor in heterogeneous catalysis is the energy of the d-band center with respect to the Fermi level, which is connected to the interaction between adsorbate valence states and the d-states of a transition metal surface. Consequently, molecule adsorption energies on transition metal surfaces linearly correlate with the d-band center, which can then be related to catalyst activity through linear scaling relations. Other catalyst descriptors derived by intuition exist such as the “generalized” coordination number or “orbital-wise” coordination number, which can estimate the chemical reactivity of nanoparticle catalysts by rationally counting the atoms (or their orbital overlap) that influence the electronic structure of each catalyst site. Such descriptors are powerful but have limitations in accuracy and generalizability. For example, very electronegative adsorbates on substrates with a nearly filled d-band (e.g., OH adsorption on platinum alloys) are a family of common adsorbate-substrate systems that are not well described by the d-band model.

More accurate and generalizable descriptors to predict catalyst figures of merit may exist but remain undiscovered. ML tools for descriptor identification could surpass human intuition to find new, potentially superior, descriptors. It is also possible ML tools could combine known descriptors in unintuitive ways to produce a single more accurate descriptor. To find catalyst descriptors using ML, the set of potential features from which the descriptor is learned must contain the chemistry and physics relevant to the target property of interest. Thus, generating or constructing relevant catalyst features for a given problem is critical.

Using catalyst features that do not require QM calculations can accelerate catalyst prediction and screening. For example, although the d-band center predicts adsorption energies on metal surfaces, its computation requires QM (typically, DFT) calculations. A kernel ridge regression (KRR) model was trained to predict CO adsorption energy on 263 alloy surfaces using the d-band width of the muffin-tin orbital and the geometric mean of electronegativity as features, which both can be obtained without QM calculations. After training, this KRR model was used to screen CO reduction reaction core-shell catalysts, with Cu₂Zr@Cu and Cu₄Y@Cu predicted to be more active than Au-based catalysts. Another study used gradient boosting regression to quickly estimate the d-band center for 11 monometallic and 110 bimetallic surfaces based on tabulated features such as the density and the enthalpy of fusion of each metal. Because adsorption energies are related to catalyst activity through linear scaling relations, rapidly predicting adsorption energies can yield catalyst activity trends on metal and alloy surfaces.

Although nonlinear regression models are predictive and can consist of physically motivated features, a common criticism is their relative lack of physical interpretability due to their high dimensionality and nonlinearity. Yet, sensitivity analysis can be applied to random forests or neural networks to estimate the relative importance of features in the model. Nonetheless, if the goal is to understand the chemical mechanism of catalysts instead of simply fitting data, then low dimensional models are desirable.

Compressed sensing based feature selection methods can give linear, low-dimensional models (i.e., the number of dimensions is just the number of terms in a linear expansion), which offers a robust and fast approach to find simple descriptors of materials to predict target properties. In particular, a recently created algorithm called Sure Independence Screening and Sparsifying Operator (SISSO) finds low-dimensional descriptors out of a huge feature space (billions of features) within the framework of compressed-sensing based dimensionality reduction. SISSO has been used by some of the authors to find an improved descriptor to predict the stability of perovskite oxide and halide materials using an experimental dataset. The linearity and simplicity of the descriptors found by SISSO can make them more transferable to materials outside of the training set than nonlinear models, which are prone to overfitting. Although not currently applied to an example relevant for catalysis, SISSO is expected to aid the discovery of descriptors that map catalyst features to their figures of merit.

Data mining methods are powerful ML tools to find nontrivial insights in big data and to help build predictive models. Efforts have been made to integrate data mining methods with heterogeneous or homogeneous catalysis data to promote catalyst characterization and to build quantitative structure-property relationship models. An early study used data mining to help make predictive models of cyclohexene epoxidation yield by mesoporous titanium-silicate catalysts. In this study, principal component analysis (PCA) was used to extract spectra features from X-ray diffraction (XRD) characterization data of 63 catalysts. The composition of the starting synthesis gel and XRD spectra features were used as NN inputs to classify the catalyst epoxide yield. XRD spectra features markedly improved catalyst performance predictions compared with using only synthesis parameters. Besides helping to extract predictive features, data mining can find trends in catalytic reactions. For example, selective hydrogenation of 5-ethoxymethylfurfural was examined over 96 bimetallic catalysts and 16 metal catalysts supported on either SiO₂ or Al₂O₃. Each catalyst was tested in two solvents (diethanolamine, 1,4-dioxane) and three temperatures. Using PCA, major trends in the dataset regarding the impact of the support, temperature, solvent, and metal for the hydrogenation of 5-ethoxymethylfurfural were found; for example, SiO₂-supported catalysts typically have much lower activity than Al₂O₃-supported catalysts and higher conversions are obtained.

*KRR is a nonlinear version of ridge regression similar to the least squares procedure, except it penalizes the sizes of the regression coefficients. The type of nonlinearity in KRR is determined by the choice of kernel.

1PCA is a method that transforms a number of features into a smaller number of uncorrelated features called principal components, which best separate the data points.
obtained using diethyl carbonate as a solvent compared to 1,4-dioxane.

Data mining found strong correlations between bulk material properties of elemental metals and their experimental hydrogen evolution reaction (HER) kinetics in acid. A dataset containing 38 elemental metals and 50 bulk materials properties were mined for correlations with HER exchange current densities (j_0) using the Reshef algorithm. Interestingly, the melting point and bulk modulus of the metals gave correlations slightly stronger than those of the d-band center for HER activity, and these correlations remained true for the promising NiMo HER electrocatalyst and a previously untested MoSi$_2$ catalyst, Figure 3. These case studies show that data mining tools can find hidden patterns in experimental catalysis data and suggest regions in “catalyst space” where improved catalysts are found.

Most ML applications in catalysis infer a global prediction model for some property of interest, but the underlying mechanism for a desired catalyst property could differ for different catalysts within a large amount of data. Consequently, a global model fitted to the entire dataset may be difficult to interpret and incorrectly describe the physical mechanisms. One could instead partition the dataset into chemically similar catalyst subgroups via clustering algorithms and train a separate model on each subgroup, which can increase prediction accuracy by reducing the different physicochemical effects that each ML model must describe. As an alternative, local pattern search algorithms such as subgroup discovery (SGD) could be used to automatically find and describe subgroups. SGD aims to find and describe local subpopulations in which the target property takes on a useful distribution. The SGD algorithm consists of three main parts: (1) the use of a description language for finding subgroups within a given pool of data; (2) the definition of utility functions that formalize the interestingness of subgroups; and (3) the use of a search algorithm to find selectors that describe interesting subgroups. One of the authors has shown SGD can be used to find descriptors that predict the stable crystal structure for the 82 octet AB binary materials, as well as find patterns and correlations between structural and electronic properties of gold clusters (Au$_{59}$–Au$_{14}$). Unlike global modeling algorithms, SGD could identify potentially unintuitive groupings of catalysts, which (a) enables understanding of physicochemical similarity between systems, and (b) can be used to improve predictive models.

Machine-learned interatomic potentials for catalyst simulation

Modeling catalysts under reaction conditions using QM is computationally expensive because the cost of these approaches scales unfavorably with system size, thus QM applications remain limited to small catalytic systems (hundreds of atoms). To overcome this size constraint, ML is being used to develop interatomic potentials (mathematical functions for computing the potential energy of a system of atoms) trained with data generated by QM, which estimate interaction energies with increased numerical efficiency compared with QM methods. Therefore, these machine-learned interatomic potentials (MLPs) can speed-up simulations by several orders of magnitude while keeping comparable accuracy to QM methods. The small computational cost of MLPs compared with QM methods promises to make them useful to catalytic systems at extended length and time scales, and aid near-exhaustive catalyst structure searches, see Figure 4.

After catalyst structures under operating conditions are determined, mechanistic modeling and microkinetic simulations can be performed to obtain insights and make catalyst predictions, which can next be confirmed by catalyst synthesis, characterization, and testing. Further advances in MLPs are needed, however, to fulfill the vision outlined in Figure 4. In the following section, we will discuss some progress, challenges, and opportunities for MLPs to model catalysis, as well as some ambitious MLPs, which may one day circumvent the need for traditional QM modeling of catalysts.

MLPs have undergone great advances in recent years, which is laying the foundation for MLP applications to catalysis studies. For example, the first molecular dynamics simulation with a machine-learned density functional (trained on DFT...
reference data) was used to simulate intramolecular proton transfer within malonaldehyde. MLPs made of deep tensor neural networks can perform highly accurate molecular dynamics simulations of small molecules, classify the relative stability of aromatic rings, as well as give insights on local molecular chemical potentials.

The accuracy of NN interatomic potentials are competitive against popular force fields such as ReaxFF. ReaxFF is a bond order-based force field that can predict bond formation/breaking reactions. The Behler–Parrinello neural network (BPNN) potential, which uses symmetry functions to represent the chemical environment of each atom in the system, was benchmarked against ReaxFF for predicting the equation of state, vacancy formation and diffusion barriers for bulk gold, surface diffusion and slipping barriers for gold surfaces, and the most stable gold nanocluster structures for Au$_{6}$ and Au$_{38}$. BPNN was fitted to 9734 DFT calculations (using PBE) and gave an RMSE of 0.021 eV/atom on the validation set, whereas ReaxFF had an RMSE of 0.136 eV/atom over the entire dataset. Although able to achieve high accuracy, one drawback of NN-based MLPs is their computational expense among potentials, which is 1–2 orders of magnitude higher than ReaxFF and classical interatomic potentials because of the more complex representation of the system that is used in combination with the NN.

MLPs are being increasingly used to model catalyst dynamics and predict stable surfaces and structures under reaction conditions. Dynamics in catalysis are so ubiquitous that catalysts have been referred to as “living” systems. For example, the distribution and concentration of vacancy sites in catalyst supports can change under reaction conditions and impact catalytic performance. Ostwald ripening (the growth of larger nanoparticles from smaller nanoparticles), or nanoparticle disintegration into single atoms are also common dynamic phenomena that can change nanoparticle activity and selectivity. A NN interatomic potential combined with grand canonical Monte Carlo (GCMC) predicted the surface coverage of oxygen atoms on a Pd(111) surface as a function of temperature and pressure. Additionally, the NN potential was used with nudged elastic band calculations to predict the...
minimum energy pathway for oxygen adatom diffusion on Pd(111) in the dilute limit.

One major challenge is to determine stable catalyst structures under reaction conditions, for example, small nanoclusters can adopt a diverse array of unintuitive structures at elevated temperatures. Supported nanoclusters covered with reactants could adopt a stable geometry or an ensemble of geometries different than those covered with reaction intermediates or products. MLPs could help determine supported nanocluster geometries in the presence of adsorbates through combination of structure-searching methods such as genetic algorithms, basin-hopping and GCMC.

Fast and predictive reactive MLPs would be indispensable for simulating challenging systems such as catalysis at liquid/solid interfaces, for which a detailed solvent description is required (e.g., solvent can participate directly in reactions and modify the surface coverage of intermediates) but difficult to achieve in practice. MLPs have been used to study structural and dynamical properties of interfacial water at low-index copper surfaces, including water probability densities, molecular orientations, and hydrogen-bond lifetimes. Combining a MLP with Monte Carlo enabled the characterization of the equilibrium surface structure and composition of bimetallic Au/Cu nanoparticles in aqueous solution, which are relevant CO\textsubscript{2} reduction catalysts. Future work involving QM/MLP methods to simulate the active site with high fidelity (using QM) and the rest of environment (using a MLP) would be valuable to model larger catalytic systems and reactions in solution.

One drawback of MLPs is the large amount of data typically needed to achieve predictive accuracy, which often requires many thousands of geometry configurations for training. Recently it was shown, however, that gradient-domain machine learning, which uses exclusively atomic gradient information instead of atomic energies, can construct accurate MLPs from only 1000 geometries obtained from molecular dynamics trajectories (e.g., for benzene, toluene, ethanol, and aspirin). This approach enables molecular dynamics simulations with DFT accuracy for small molecules three orders of magnitude faster than simulations using explicit DFT calculations. Another strategy is to directly machine learn energy functionals (within the framework of Kohn-Sham DFT), which should yield large savings in computer time and allow larger catalytic systems to be studied.

Many thousands of scientific articles published each year use QM methods, so these types of machine learning works are exciting because they promise to allow the construction of fast potentials with QM accuracy to simulate catalyst systems. MLPs have shown success to examine molecules, metal surfaces containing adsorbates, and nanoparticles. Yet progress is needed to increase the transferability and generalizability of MLPs, especially for modeling bond-breaking reactions across full catalytic cycles. Developing MLPs to model reactions across full catalytic cycles is challenging because: (1) it is hard to obtain sufficient training data of relevant bond breaking reactions and (2) it is more difficult for MLPs to interpolate bond breaking events than nonbond-breaking events due to the greater change in the chemical properties of a given system. Another challenge to overcome is the difficulty in training accurate MLPs for condensed-phase systems containing above four different elements (because of the exponentially growing size of configuration space with the number of elements). Some of the challenges regarding training MLPs will be alleviated with larger training datasets of accurate QM data becoming more available in data repositories, and from improvements in approaches to understand uncertainty in model predictions. Progress in data sharing and data reuse techniques (e.g., transfer learning) would also promote usage of MLPs to study catalysts via easier access to training data. With the growing availability of software for machine learning potentials such as AMP, PROPhet, and TensorMol it is evident that MLPs will keep being extended.

Accelerating the discovery of catalytic mechanisms

Designing heterogeneous catalysts for a specific reaction requires knowledge of the rate-controlling transition states and intermediates. To understand the key elementary steps and surface abundance intermediates with atomistic detail, the stable structures and the corresponding transition states (TS) that connect them must be known. On the potential energy surface (PES), stable reactant molecules, product molecules, and reaction intermediates are in local or global minima. Catalyst geometry optimization methods to find minima usually involve Conjugate Gradient or Quasi-Newton Raphson methods. A more difficult problem than finding minima is to locate TS structures on heterogeneous catalysts (e.g., bond breaking reactions of adsorbates), which correspond to first-order saddle points on the PES.

TS searching algorithms have aided many computational mechanistic analyses of heterogeneous catalysts. Some of these algorithms are: the Cerjan-Miller algorithm, Climbing-Image Nudged Elastic Band, Dimer method, Force Reversed method, Growing String, and the Single-Ended Growing String. Once the transition states for elementary steps are known, catalyst activation free energy barriers and rate constants can be computed. Thus, creating more efficient algorithms to navigate the PES and locate transition states is important to help understand catalytic reactions.

ML can accelerate TS searches and minimum energy path (MEP) finding algorithms. The MEP is the lowest-energy path connecting two minima on the PES (i.e., the path of maximum statistical weight in a system at thermal equilibrium), thus it is kinetically relevant. To accelerate MEP and TS search calculations, a DFT-trained NN was used to estimate the PES for which nudged elastic band (NEB) computations were carried out. Another study used Gaussian process regression (GPR) to speed-up NEB searches to find MEPs for a benchmark system involving 13 rearrangement transitions of a heptamer island on a model solid surface. These ML approaches are surely going to accelerate calculations of MEPs for heterogeneous catalytic processes involving small adsorbates. However, better computational scaling of the GPR calculations will be needed to accelerate MEP calculations of larger systems. Looking ahead, we believe the future of TS and MEP path searching lies in combining ML with automated reaction path search methods. Such approaches would create the possibility of exhaustively searching heterogeneous catalyst reaction pathways in an automated fashion to find the relevant thermodynamic and kinetic information of the full catalytic cycle.
ML approaches also show promise to aid mechanistic studies by helping to address reaction network complexity in a systematic fashion.114,115 QM modeling can yield insights into reaction mechanisms and improved catalysts for reactions of small molecules, but it is typically computationally prohibitive for complex reaction networks involving large molecules. As a step toward enabling accurate and fast computational predictions of reaction networks, an optimization framework using GPR was applied to study the reaction of syngas (CO + H\textsubscript{2}) over Rh(111) catalysts under experimentally relevant operating conditions (573 K and 1 atm of gas phase reactants), Figure 5.114 A reaction network for syngas conversion over Rh(111) is shown in Figure 5A, which has hundreds of species, hundreds of possible reactions, and more than two thousand possible reaction pathways to consider. Starting from a few DFT energies of the intermediates in the reaction network, a computationally inexpensive GPR scheme was used to predict the free energy for all intermediates in the reaction network. TS linear scaling relations were exploited to estimate the activation energies for all reactions in the network, and a simple classifier was used to select the potential rate-limiting steps. Through an iterative GPR model refinement process, where only potential rate-limiting steps were further analyzed using the climbing-image nudged elastic band algorithm, a probable reaction network was identified, Figure 5B.

The most probable reaction mechanism was found using DFT to calculate only 5% of transition state energies and 40% of intermediate species energies, and the mechanism matches the experimentally observed selectivity of Rh(111) toward making acetaldehyde. For analyzing more complex reaction pathways, advances in graph theory-based regression approaches can be used to quickly estimate needed thermochemistry and activation energies.115 This example once again shows that ML can make more efficient use of CPU time by leveraging catalyst data already obtained by QM methods.

Opportunities and Prospects

Machine learning is a valuable addition to a researcher’s toolkit for generating knowledge about heterogeneous catalysts. ML combined with computational modeling or experiments is creating avenues for rapidly screening heterogeneous catalysts, finding descriptors of catalyst performance, and aiding catalyst synthesis. A major application of ML in catalysis is to train predictive models based on quantum mechanical data to enable the systematic screening of large catalyst spaces for adsorbate binding strength and activity. ML approaches can help identify active catalyst facets and alloy compositions. Additionally, applications of machine-learned interatomic potentials promise to allow the simulation of catalytic systems at larger length scales or longer time scales with high accuracy, albeit further methodological development is needed. Other cutting-edge methods for descriptor identification such as SISSO and subgroup discovery can search over a huge space of possible features to find descriptors of catalyst stability, activity, and selectivity.

2318 DOI 10.1002/aic Published on behalf of the AIChE July 2018 Vol. 64, No. 7 AIChE Journal
Literature on heterogeneous catalysis is mounting with numerous catalysts being synthesized, characterized, and tested for catalytic performance. Organizing all the generated catalyst information in databases for storage, query, and sharing is key to fully exploit the power of ML to construct predictive models and to find patterns in catalysis data. However, manually extracting catalyst knowledge from published literature is tedious, time consuming, and can be error prone. Natural language processing and ML would allow automated text and data extraction to uncover scientific insights from this large body of catalysis information. This area is ripe to and materials science communities. Tools are needed to extract catalyst information such as kinetics, thermodynamics, particle size, operating temperature, and synthesis conditions. Being able to extract large amounts of catalyst information to fill databases would create routes for innovation through data mining studies.

Another area ready for further innovation is machine learning for catalyst imaging (e.g., scanning transmission electron microscopy, scanning tunneling microscopy, and atomic force microscopy) and spectroscopic (e.g., infrared, X-ray absorption near edge structure) analysis. For example, ML could help generate higher quality images or improved spectra with decreased sampling time, or help interpret experimental spectra. Importantly, imaging and spectroscopic data contains quantitative structural and functional information, albeit with high complexity. ML models that map imaging and spectroscopic data to structure-property information would be valuable for catalyst understanding and help link models and experiments. Recently, a neural network converted XANES spectra of Pt nanoparticles into information about their atomic-coordination environment to assist with their structural characterization. The neural network was trained on Pt nanoparticle XANES simulations and validated against experiment. This result suggests rapid spectroscopic determination of catalyst morphology is becoming closer to reality through the aid of ML.

From accelerating catalyst active site determination to finding descriptors and patterns in catalysis data, in recent years machine learning has proven to be versatile and useful for aiding heterogeneous catalyst understanding, design, and discovery. The power of machine learning has just begun to be exploited in heterogeneous catalysis research, with much room remaining for advancement (e.g., text mining, image analysis, machine-learned interatomic potentials, and reaction path search algorithms). Further development of machine learning software, algorithms, and techniques promises to aid heterogeneous catalysis design and discovery in the years to come.

Acknowledgments

The authors thank Saswata Bhattacharya, Sergey Levchenko, Suljo Linic, Runhai Ouyang, and Matthias Scheffler for helpful discussions about machine learning for catalysis. B.R.G acknowledges start-up funding from University of Michigan, Ann Arbor. C.S. gratefully acknowledges funding through a postdoctoral fellowship by the Alexander von Humboldt Foundation.

Literature Cited

12. O’Mara J, Meredig B, Michel K. Materials data infrastructure: a case study of the citrination platform to

