

pubs.acs.org/JACS

Correction to "Inorganic Halide Double Perovskites with **Optoelectronic Properties Modulated by Sublattice Mixing**"

Christopher J. Bartel,* Jacob M. Clary, Christopher Sutton, Derek Vigil-Fowler, Bryan R. Goldsmith, Aaron M. Holder, and Charles B. Musgrave*

	III Metrics & More	Article Recommendations	s Supporting Information
e recently n	oticed two errors that have led	to an addition	
V V and correc	tion to J. Am. Chem. Soc. 202	20, 142 (11),	
pplication of percent	$P(\tau)$ used	to select the	
et of compound	ls for evaluation artificially	excluded 51	
ompounds from	further evaluation. These com	pounds have	
low been evaluate	d in the same manner as the o	riginal 311. A	
econd error in dat	a processing led to the exclusio	on of potential	
ompeting phases	In the Cs $-B-B'$ -Cl chemical s	spaces used to	
ompute the stabil	ity (ΔH_d) of each compound.	I he stabilities	
dditional competi	ng phases.	sidering these	
The conclusion	s published in the original m	anuscript are	
inchanged, and th	e addition of 51 compounds to	o the data set	
urther emphasizes	the potential for new material	s discovery in	
his chemical space	with the number of materials p	redicted to be	
iontoxic and (me	ta)stable and have desirable t	band gaps for	
ptoelectronic app	to 55 with the Addition and	d Correction	
Revised versions of	Figure 2. Table S1. an interact	tive version of	
Figure 2 (in the SI)	, and a downloadable version o	f Table S1 (in	
he SI) are provide	d here. These figures and table	es contain the	
/ 1			

Revised version of Table S1: list of all Cs₂BB'Cl₆ compounds screened in this study sorted by their B and B' cations (PDF) Interactive version of Figure 2 (ZIP)

Downloadable version of Table S1 (TXT)

Published: September 22, 2020

pubs.acs.org/JACS

Addition/Correction

Figure 2. Map of $Cs_2BB'Cl_6$ properties. *B* and *B'* are defined along each axis (note that *B* and *B'* are treated equivalently in this work; therefore, the data are mirrored across the diagonal line). Stable compounds ($\Delta H_d \leq 0 \text{ eV}/\text{atom}$) are shown in blue, nearly stable compounds ($0 \leq \Delta H_d < 0.05 \text{ eV}/\text{atom}$) are shown in purple, and unstable compounds are shown in red ($\Delta H_d > 0.05 \text{ eV}/\text{atom}$), where ΔH_d is calculated with SCAN. The color intensity of each compound corresponds to the band gap calculated using single-point HSE06 at the SCAN-optimized geometry (spHSE06@SCAN). Compounds that have direct band gaps are indicated with an open green circle. Compounds that have indirect gaps that are within 100 meV of the direct gap are indicated with an open gold square. Compounds that have been reported experimentally are indicated with a pink ×. An interactive version of this plot that assists with navigation and displays additional properties is available in the Supporting Information.