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The Gibbs energy, G, determines the equilibrium conditions of chemical reactions and

materials stability. Despite this fundamental and ubiquitous role, G has been tabulated for

only a small fraction of known inorganic compounds, impeding a comprehensive perspective

on the effects of temperature and composition on materials stability and synthesizability.

Here, we use the SISSO (sure independence screening and sparsifying operator) approach to

identify a simple and accurate descriptor to predict G for stoichiometric inorganic compounds

with ~50meV atom−1 (~1 kcal mol−1) resolution, and with minimal computational cost, for

temperatures ranging from 300–1800 K. We then apply this descriptor to ~30,000 known

materials curated from the Inorganic Crystal Structure Database (ICSD). Using the resulting

predicted thermochemical data, we generate thousands of temperature-dependent phase

diagrams to provide insights into the effects of temperature and composition on materials

synthesizability and stability and to establish the temperature-dependent scale of metast-

ability for inorganic compounds.
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The progression of technology throughout history has been
preceded by the discovery and development of new mate-
rials1. While the number of possible materials and the

variety of their properties is virtually limitless, discovery of new
compounds with superior properties that are also stable (or
persistently metastable) and synthesizable is a tremendous
undertaking that remains as an ongoing challenge to the materials
science community2–5. The leading paradigm in this effort is the
use of first-principles computational methods, such as density
functional theory (DFT), and materials informatics to rapidly
populate, augment and analyze computational materials data-
bases and screen candidate materials for target properties6,7.
However, despite the exploding growth of these databases with
the number of compiled entries currently exceeding 50 million8,
only a small fraction of realized or potential materials have
known Gibbs energies of formation, ΔGf(T), which is critical for
predicting the synthesizability and stability of materials at con-
ditions of interest for numerous applications which operate at
elevated temperature including thermoelectrics9, ceramic fuel
cells10, solar thermochemical redox processes11, and CO2
capture12.

Experimental approaches for obtaining ΔGf(T) are demanding,
and the number of researchers using calorimetry to determine
ΔGf(T) is significantly smaller than those focused on the discovery
and synthesis of new materials. Ab initio computational approaches
for determining ΔGf(T), which involve calculating the vibrational
contribution to G(T) as a function of volume13, have benefited from
recent advances that reduce their computational cost14,15. However,
despite these advances, calculating the vibrational entropy of pho-
nons quantum mechanically is still computationally demanding,
with computed G(T) available for fewer than 200 compounds in the
Phonon database at Kyoto University (PhononDB)16. Highly
populated and widely used materials databases currently tabulate 0
or 298 K enthalpies of formation, ΔHf, which neglect the effects of
temperature and entropy on stability. As a result, the growth
of computational materials databases has far outpaced the tabulation
of measured or computed ΔGf(T) of materials, precluding
researchers from obtaining a comprehensive understanding of the
stability of inorganic compounds.

The use of machine learning and data analytics to accelerate
materials design and discovery through descriptor-based
property prediction is becoming a standard approach in materials
science17–24, however, these techniques have not previously been
used to predict the Gibbs energies of inorganic crystalline solids.
Techniques based on symbolic regression have also shown that

fundamental physics can be algorithmically obtained from experi-
mental and computed data in the form of optimized analytical
expressions of intrinsic properties (features)25–27. In this work, we
apply a recently developed statistical learning approach, SISSO (sure
independence screening and sparsifying operator)28, to search a
massive (~1010) space of mathematical expressions and identify a
descriptor for experimentally obtained G(T) that for the first time
enables ΔGf(T) to be readily obtained from high-throughput DFT
calculations of a single structure (i.e., a single unit cell volume). The
descriptor is identified using experimental data29 for 262 solid
compounds and tested on a randomly chosen excluded set of 47
compounds with measured G(T) and 131 compounds with first-
principles computed16 G(T). We then apply this descriptor to
~30,000 unique crystalline solids tabulated in the Inorganic Crystal
Structure Database (ICSD) to generate the most comprehensive
thermochemical data of inorganic materials to date.

Results
Trends in the Gibbs energies of compounds and elements.
Despite the variations of composition and structure exhibited by
different inorganic crystalline compounds, G(T) behaves remark-
ably similarly over a wide range of materials (Fig. 1a). This
similarity prompts the hypothesis that although the underlying
physical phenomena that give rise to G(T) are complex to describe
individually, a physically motivated descriptor could be predictive.
The origin of the similar behavior of G(T) can be understood from
well known thermodynamic relations, specifically that ∂G

∂T

! "
P¼

"S # 0 for mechanically stable compounds and that G(T) must

have negative concavity: ∂2G
∂T2

# $

P
¼ " ∂S

∂T

! "
P¼ " CP

T # 0. Indeed, the

negative first and second derivatives of experimental Gibbs ener-
gies as a function of temperature persist across the composition
space of a diverse set of mechanically stable stoichiometric solid
compounds (Fig. 1a). We reference the Gibbs energy, G, with
respect to the formation enthalpy at 298 K, ΔHf, because ΔHf is
readily obtained using existing high-throughput computational
methods—DFT total energy calculations and a suitable correction
for the elemental phases30–33:

Gδ Tð Þ ¼ G Tð Þ " ΔHf 298Kð Þ ð1Þ

As expected, the temperature- and material-dependence of the
enthalpic contribution to the Gibbs energy, Gδ, is small relative to
the entropic contribution (TS). If the standard state formation
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Fig. 1 Contributions to the Gibbs energies of compounds. a Experimentally obtained thermodynamic functions of 309 inorganic crystalline solid compounds
obtained from FactSage. Gδ is defined in Eq. (1). Hδ is the temperature dependence of the enthalpy normalized to be zero at 298 K (Supplementary Eq. 1), S
is the absolute entropy, and T is temperature. The subscript, exp, indicates the quantity is obtained from experimental data. b Experimentally determined
absolute Gibbs energies of 83 elements obtained from FactSage. GC (“C”) and GN (“N”) are dashed and labeled as they are mentioned in the text. The
subscript, exp, indicates the quantity is obtained from experimental data. c Mean absolute error in assuming a cancellation of solid vibrational entropy
between the compound and the elements comprising it. ΔGf(T) is defined in Eq. (3). The subscript, app, stands for approximation and ΔGf,app(T) is defined
in Eq. (4). The error bars are standard errors of the sample mean. A violin plot corresponding with each bar is provided in Supplementary Fig. 1
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enthalpy, ΔHf, is known, the temperature dependence of the
enthalpy is reliably predicted with a simple linear fit (R2 ~ 0.97,
Supplementary Eq. 1) for the 309 solid compounds considered in
this work. This is assumed implicitly when the quasiharmonic
approximation34 of the phonon free energy is used to obtain G
(T), but is quantified here across a broad composition and
temperature space.

In addition to the thermodynamic quantities ΔHf and Gδ(T),
the chemical potentials of the elements, Gi(T), also have a critical
role in the Gibbs formation energy, ΔGf(T), and thus the
temperature-dependent stability of a given compound:

ΔGf Tð Þ ¼ ΔHf 298Kð Þ þ Gδ Tð Þ "
XN

i¼1

αiGiðTÞ ð2Þ

where N is the number of elements in the compound, αi is the
stoichiometric weight of element i and Gi is the absolute Gibbs
energy of element i. While even at low temperatures
the differences in Gi between elements can be substantial (e.g.,
GC−GN= 0.28 eV atom−1 at 300 K), at higher temperatures,
differences in Gi of >1 eV atom−1 can result between solid and
gaseous elements (e.g., GC−GN= 1.12 eV atom−1 at 1200 K,
Fig. 1b). In contrast to the elemental Gibbs energies, Gi, which are
tabulated and thus require no computation or experiment to
obtain, the Gibbs energies of solid compounds, Gδ, are rarely
tabulated and computationally demanding to calculate. Further-
more, assuming that all temperature-dependent effects can be
captured by only including the elemental Gibbs energies and
neglecting those of the solid compound results in an incomplete
cancellation of errors and consequently inaccurate ΔGf(T).

The temperature dependence of the thermodynamic properties
of solids have often been assumed to be negligible relative to that
of gaseous species35. That is, the Gibbs energy is generally
assumed to be primarily entropic and principally due to
vibrations such that the temperature dependence of the formation
energies of solids is negligible. We examined this assumption for
hundreds of solid compounds by comparing the difference
between the experimental ΔGf(T) and the approximate ΔGf(T)
that results from assuming negligible temperature dependence of
the solid phase:

ΔGf ;app Tð Þ ¼ ΔHf 298Kð Þ "
XN

i¼1

αiGi;gasðTÞ ð3Þ

Given a binary solid AB, if A and B are both solid at a given
temperature, this assumption holds reasonably well and ΔHf
predicts ΔGf(T) relatively accurately, e.g. with mean absolute
errors of ~50 meV atom−1 at 900 K (Fig. 1c). However, if either A
or B are liquid at a given temperature, this error grows to ~100
meV atom−1 at 900 K. Even more alarming is the error produced
by this approximation if either A or B are gaseous at T, as is the
case for oxides, nitrides, halides, etc. with mean absolute errors
for ΔGf(T) of ~200 meV atom−1 at 900 K. In this approximation,
the chemical potential, Gi(T), of the gaseous element and the
formation enthalpy, ΔHf, of the solid compound are taken from
experiment and thus the larger error arises entirely from the
missing quantity Gδ(T). The larger error that arises when an
element is a gas or liquid, but not a solid, is due to the incomplete
cancellation of the solid vibrational entropy of the elemental
forms and the solid compound. That is, the distribution of
phonon frequencies in the crystalline compound of A and B
produce vibrational entropy SAB and if A and B are elemental
solids, they too have solid vibrational entropies SA and SB where
from Fig. 1c, we can presume in general: SAB ≈ SA+ SB. However,
when, for example, A is a diatomic gas, the magnitude of the

frequencies of the molecular vibrations of A are significantly
larger and the incomplete cancellation of the vibrational entropy
of AB and B leads to significant error as temperature increases.

Descriptor identification and performance. Because ΔHf and
Gi(T) are readily obtained from tabulated calculated or experi-
mental results, it is the lack of tabulated Gδ(T) which prevents the
tabulation of ΔGf(T) in computational materials databases
(Eq. 2). The SISSO (sure independence screening and sparsifying
operator) approach28 was used to identify the following
descriptor for Gδ(T):

Gδ
SISSOðTÞ

eV
atom

% &
¼ "2:48 ' 10"4 ' lnðVÞ " 8:94 ' 10"5mV"1! "

T

þ 0:181 ' ln Tð Þ " 0:882

ð4Þ

where V is the calculated atomic volume (Å3 atom−1), m is the
reduced atomic mass (amu), and T is the temperature (K). SISSO
efficiently selects this descriptor from a space of ~3 × 1010 can-
didate three-dimensional descriptors, where the dimensionality is
defined as the number of fit coefficients (excluding the intercept).
A training set of 262 compounds with 2,991 (T, Gδ) points was
randomly selected from 309 inorganic crystalline solid com-
pounds with experimentally measured Gδ(T) (Fig. 1a) and was
used for descriptor identification. The remaining 47 compounds
with 558 (T, Gδ) points were reserved for testing. The descriptor
performs comparably on the training and test sets with mean
absolute deviations between the descriptor and experiment of
<50 meV atom−1 on both sets (Fig. 2). Notably, there is some T-
dependence on the magnitude of residuals, with larger deviations
as T (and therefore the magnitude of Gδ) increases (Supple-
mentary Fig. 2). There are three plausible reasons for this: (1) the
magnitude of Gδ being predicted increases so at fixed relative
error, the magnitude of the residuals is larger, (2) the number of
compounds with measured Gδ(T) decreases as T increases, and
(3) the physics dictating Gδ at high T are more complex due to
e.g., significant anharmonic vibrational effects that are less
accurately captured by the simple model of Eq. (4). Approxi-
mately one-third of the compounds considered have measured Gδ

(1800 K) and the mean absolute deviation (MAD) between
Gδ

SISSO and Gδ
exp is found to increase from 53 to 92 meV atom−1

from 1000 to 1800 K on the 47 compound test set. However, the
relative MAD actually decreases from 14 to 11% over this same
range on the test set, supporting reason (1) as a primary driver for
the increasing residuals at elevated temperature. Violin plots of
residuals for the training and test sets as a function of tempera-
ture are shown in Supplementary Fig. 2. More details of the
approach used for descriptor identification can be found in
Methods.

While a number of elemental and calculated properties were
considered as inputs, it is notable that SISSO selects a descriptor
dependent on only three quantities—temperature, atomic mass,
and (calculated) atomic volume. The identification of these
properties agrees well with intuition regarding the properties that
most significantly affect the magnitude of vibrational entropy and
free energy36,37. The phonon frequencies in a solid compound, ω,
are proportional to the force constant of the vibrational mode, k,
and the reduced mass, m, of the vibrating atoms of the mode,
with ω ~

ffiffiffiffiffiffiffiffiffi
k=m

p
in the harmonic oscillator approximation. As a

mode’s stiffness increases or its reduced mass decreases, its
vibrational frequency increases, leading to a decrease in
vibrational entropy and more positive Gibbs energies. This
relationship is also apparent in the descriptor for Gδ(T), where m
is included directly and V appears as a surrogate for k (larger
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atomic volumes being associated with less stiff bonds or lower k).
At constant m and V, increasing temperature decreases Gδ when
"2:48 ' 10"4 ' lnðVÞ " 8:94 ' 10"5mV"1 # 0:181lnðTÞ=T . This
condition is uniformly satisfied for all 309 compounds in the
training and test sets from 300 to 1800 K, reflecting the
expectation of the negative temperature dependence of the Gibbs
energy from fundamental thermodynamic expressions—e.g., G=
H− TS. With V and T fixed, increases in m result in more
negative Gibbs energies, agreeing with the behavior of a harmonic
oscillator for which ω depends inversely on mass and Gδ depends
inversely on ω. Finally, with m and T fixed, the descriptor (Eq. 4)
indicates that Gδ becomes more negative for larger V (for V > 1
Å3 atom−1, i.e., all solid systems), in agreement with V acting as a
surrogate for the bond stiffness in the expression for the
frequencies of a harmonic oscillator. Importantly, V is the only
structural parameter in Eq. (4) and therefore, at fixed composi-
tion (chemical formula), Gδ varies between structures (i.e.,
polymorphs) only as V varies and Gδ(V) dictates that less dense
structures of the same composition will have more negative Gδ.
Therefore, the prediction of polymorphic phase transitions is
beyond the scope of this descriptor.

The quasiharmonic approximation (QHA) is commonly
applied as an ab initio method for approximating G (in practice,
Gδ)13. This approach typically requires a number of DFT
calculations because the Helmholtz energy, including the
electronic ground-state energy and the free harmonic vibrational
energy, must be calculated as a function of volume (typically over
a range of 10 or more volumes). Because of the high
computational cost associated with QHA calculations, the
number of structures with calculated G is about 4 orders of
magnitude less than the number of structures with calculated
formation enthalpies, ΔHf. As an additional test set for the SISSO-
learned descriptor for Gδ, we compare our predictions to 131
compounds with tabulated Gδ in the PhononDB set which are not
also in the experimental set compiled from FactSage used for
training and testing the descriptor (Fig. 3a, b). For these

compounds, the descriptor agrees well with the ab initio values
calculated using QHA, with a mean absolute deviation of 60 meV
atom−1. Notably, there is a nearly systematic underestimation of
QHA-calculated Gδ by the descriptor with Gδ

QHA >Gδ
SISSO for

98% of (T, Gδ) points in this set. Comparing QHA to experiment
for an additional 37 compounds with experimentally measured
Gδ available in FactSage reveals a similar systematic deviation
with Gδ

QHA >Gδ
exp for 94% of points (Fig. 3c, d). A number of

factors likely contribute to the systematic offset between QHA
and experiment including the approximations associated with the
calculation (e.g., DFT functional and approximation to anhar-
monic vibrations), the neglect of additional contributions to the
Gibbs energy including configurational and electronic entropy,
and potential impurities or defects in the experimentally
measured samples. It is notable that the deviation between
Gδ

QHA and Gδ
exp is mostly systematic (R2 ~ 0.97), so stability

predictions based on convex hull phase diagrams constructed
using ab initio Gδ

QHA should benefit from a fortuitous
cancellation of errors, leading to even lower errors in practice
than the already small deviation of 41 meV atom−1 on average.
Remarkably, for the same set of 37 compounds, our descriptor
has lower mean absolute deviation from experiment than QHA
(Fig. 3e, f) but does not exhibit this systematic underestimation of
the magnitude of Gδ owing to its exclusive use of experimentally
measured data for descriptor selection. While this magnitude of
deviation for Gδ between experiment and prediction (using
either QHA or the SISSO-learned descriptor) has been quoted as
chemical accuracy (~1 kcal mol−1) in the context of ΔHf

38,
it is important to note that temperature-dependent predictions of
stability using Gibbs formation energies, ΔGf(T), will be affected
by errors in both Gδ(T) and the temperature-independent ΔHf.

Thermochemical reaction equilibria. We combine our high-
throughput model for the prediction of Gδ(T) with tabulated and
readily available DFT-calculated ΔHf and experimental Gibbs
energies for the elements, Gi(T) into Eq. (2) to enable the rapid
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prediction of ΔGf(T) from a single DFT total energy calculation.
Thus, reaction energetics, thermochemical equilibrium product
distributions, and temperature-dependent compound stability
can be assessed for the millions of structures currently compiled
in materials databases. This unprecedented ability to rapidly
predict reaction equilibria for reactions involving solid com-
pounds is illustrated in Fig. 4 for a small set of example reactions.
In Fig. 4a, the Gibbs energy of reaction, ΔGrxn(T), which dictates
the equilibrium spontaneity of any reaction event, is demon-
strated for: the decomposition of SnSe39, solar thermochemical
hydrogen generation by the Zn/ZnO redox cycle40, the car-
bothermal reduction of NiO to Ni41, the oxidation of MoS242, and
the corrosion of CrN by water43. In each case, ΔGrxn computed
from the SISSO-learned descriptor for Gδ(T) agrees both quali-
tatively and quantitatively with ΔGrxn resulting from the experi-
mental values for Gδ(T). As a more sophisticated demonstration,
Fig. 4b shows the equilibrium product distribution based on
Gibbs energy minimization for the hydrolysis of Mo2N to MoO2
in the context of solar thermochemical ammonia synthesis44. In
this analysis, Mo2N and H2O are placed in a theoretical chamber

at 1 atm fixed pressure and allowed to reach thermodynamic
equilibrium with a set of allowed products—MoO2, Mo, NH3, H2,
and N2—where the equilibrium product distribution at each
temperature is that which minimizes the combined Gibbs for-
mation energy of all species in the chamber. Even for this rela-
tively complex system, the predicted product distribution based
on the descriptor for Gδ(T) agrees both qualitatively and quan-
titatively with the product distribution calculated from the
experimental Gδ(T). While this capability is demonstrated here to
illustrate the utility of the identified descriptor for a few example
reactive systems, this procedure is readily amenable for predicting
reaction equilibria and product distributions in a high-
throughput manner with numerous reacting species for a wide
range of solid-state reactions. The accuracy of the descriptor-
predicted reaction energies for new systems will be dependent not
only on the effectiveness of Gδ

SISSO(T) to approximate Gδ
exp(T)

but also on the extent to which DFT-predicted ΔHf agrees with
experiment as both parameters are required to obtain ΔGf(T)
(Eq. 2) and therefore ΔGrxn(T).
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Effect of temperature and composition on material stability.
Beyond the investigation of solid-state reaction equilibria for a
few example systems, we have also used the descriptor for Gδ(T)
to compute phase diagrams to obtain broad insights into the
temperature-dependent stability and metastability of thousands
of known stoichiometric compounds. In particular, in the convex
hull construction, formation energies, ΔGf, are plotted as a
function of composition, and joined to produce the convex object
of largest area. If ΔGf of a composition lies above the convex hull,
the composition is thermodynamically metastable and the vertical
distance from the hull quantifies the magnitude of metastability
of the compound, where larger distances indicate a greater
thermodynamic driving force for decomposition of the metastable
phase into stable phases. For the first time, temperature can be
incorporated as a third axis in a high-throughput manner using
Gδ

SISSO to produce ΔGf(T) and assess the stability of compounds.
The Materials Project tabulates calculated structures for 29,525

compositions which also have reported ICSD numbers, suggest-
ing that they have been realized experimentally45. Previous efforts
to analyze temperature-independent metastability used ΔHf as a
surrogate for formation energy to predict that ~50% of all ICSD
structures are metastable at 0 K46. We predict that ~34% of ICSD
compositions are metastable in the absence of temperature effects
—i.e., also using ΔHf. An important distinction between
structures and compositions is that if a given composition has
more than one known structure, all structures except the ground
state at a given set of thermodynamic conditions are, by
definition, metastable under those conditions. As such, in our
analysis, we consider all structures of the 29,525 compositions,
but only report statistics for the ground-state structures at each
temperature (Figs. 5 and 6).

The fraction of compositions that are thermodynamically
metastable remains nearly constant up to ~900 K where the
competing effects of the elemental phases (Fig. 1b) lead to
increasing compound destabilization with temperature (Fig. 5a).
The fraction of compounds which move onto and off of the
convex hull with temperature are also quantified relative to those
that are predicted to be metastable and stable at 0 K. If a given
composition exhibits no stable structures at 0 K (i.e., ~34% of the
ICSD), it is unlikely that any of these structures become
thermodynamic ground states at higher temperatures. In fact,
only 1,602 of the 10,001 0 K metastable compositions are found to
be stabilized when temperature is increased up to 1800 K. For the
1,602 compounds which are 0 K metastable but that come onto
the hull to become stable at elevated temperature, the magnitude
of their 0 K metastability is quantified in Fig. 5b. In general,
compounds must lie very near to the hull at 0 K to have a chance

of thermal stabilization at T > 0 K. Even for compounds which
become thermodynamic ground states at 1200 K, we find their
metastabilities at 0 K to be typically <15 meV atom−1 and thus
thermal stabilization is often not the active mechanism in the
high-temperature synthesis of solid compounds.

It is well known that metastable structures are often accessed
experimentally, as indicated by the significant fraction of ICSD
structures which are realized, but predicted to be metastable
across this wide temperature range. A number of routes exist for
accessing metastable structures, such as non-equilibrium synth-
esis conditions and alloying. In these cases, the magnitude of the
metastability of these non-equilibrium structures indicates the
driving force to convert to one or more stable phases, which is a
critical consideration in materials processing and successful
application of the material at operating conditions. Given the
pool of metastable compositions in the ICSD, a Gaussian kernel
density estimate is constructed based on the magnitude of
metastability, ΔGd, and evaluated as a function of temperature
(Fig. 5c) and composition (Fig. 6). At 0 K, 54% of metastable (but
synthesized) compounds are >25 meV atom−1 above the convex
hull, 39% are >50 meV atom−1, and 26% are >100 meV atom−1

above the hull. These results provide some quantification for the
false negative rate that is incurred by the ~25–100 meV atom−1

heuristic error bars of materials screening approaches where
compounds are typically allowed to survive stability screening if
they are thermodynamically stable or within ~25–100 meV atom
−1 of metastability46–49. This range has been justifiably
augmented in some cases, for example, in the search for novel
2D materials, which are by definition metastable, where the range
has been expanded to e.g., 150 meV atom−150. Recent work has
also shown that the 0 K energy of amorphous phases can provide
an upper bound on the metastability of compounds that can be
synthesized48. At low temperatures, the distribution of metast-
ability is mostly constant with a median metastability of 43 meV
atom−1 at 900 K, suggesting that increasing the temperature from
room temperature to 900 K results in only a small thermo-
dynamic penalty of ~20 meV atom−1. Above this temperature,
many competing elemental phases undergo phase changes,
leading to destabilization of compounds and a median metast-
ability of 113 meV atom−1 at 1800 K. This provides rationale for
the viability of high-temperature solid-state synthesis approaches
where increasing the temperature enables atomic rearrangements
to overcome kinetic barriers while maintaining the desired
structure as a thermodynamically accessible metastable state.

In addition to the temperature dependence of metastability,
accessible compound metastability is also composition-depen-
dent, as shown in Fig. 6. At 0 K, compounds comprised of most
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elements have a similar distribution of metastabilities to the
overall distribution shown in Fig. 5c, with a few notable
exceptions, particularly compounds containing carbon or nitro-
gen. For carbides and nitrides, the median metastabilities at 0 K
are 144 meV atom−1 and 109 meV atom−1, more than five times
the median metastability of all other compounds in the ICSD at 0
K (20 meV atom−1). This prevalence of enhanced accessibility of
metastable states was previously recognized for nitrides at 0 K and
attributed to high cohesive energy which enables metastable
configurations to persist46,51. The consequences of the high
cohesive energies of these materials is low self-diffusion
coefficients or high barriers to atomic rearrangement resulting
from the tendency of the not-so-electronegative anions, carbon
and nitrogen, to form mixed covalent/ionic bonds with electro-
positive and weakly electronegative elements across the periodic
table.

Despite the similar metastability behavior of carbides and
nitrides at low temperature, we find that temperature has a
dramatically different effect on these two classes of compounds,
with nitrides rapidly destabilizing by moving away from the hull
and broadening their metastability distribution relative to
carbides. The increases in median metastability for carbides and
nitrides from 0 to 1800 K are 144 meV atom−1 and 231 meV
atom−1, respectively. This can be attributed to the tendency for
entropy to stabilize gaseous elemental nitrogen (i.e., N2) with

temperature much more rapidly than solid elemental carbon (i.e.,
graphite). This creates the considerable high-temperature metast-
ability difference that likely plays a critical role in enabling the
synthesis of metastable carbides from amorphous precursors,
where the lower thermodynamic driving force for phase
separation of carbides at high temperature enables the persistence
of higher energy amorphous precursor phases and increased
thermal energy required to activate crystallization kinetics. The
remarkable metastabilities exhibited by carbides and nitrides
relative to other classes of materials provide chemical design
principles for hindering atomic rearrangements and point
towards these underexplored spaces for the discovery of highly
metastable materials which are likely synthesizable.

Discussion
Open materials databases are populated with millions of DFT-
calculated total energies and formation enthalpies which have
been used extensively for the design and discovery of new
materials. However, critically lacking from these databases is the
effect of temperature on the thermodynamics of these materials.
To address this challenge, we have developed a simple and
accurate descriptor for the Gibbs energy of inorganic crystalline
solids, Gδ(T), using the SISSO approach. This low dimensional
and physically interpretable descriptor reveals the main drivers
for Gδ(T) to be the mass of the elements which comprise the
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compound and the volume those atoms occupy in the material,
agreeing well with the expectation from fundamental physical
expressions and prior work quantifying the magnitude of vibra-
tional entropy in solids. Remarkably, using only these parameters
and temperature, the Gibbs energy can be predicted with accu-
racy comparable to the ab initio QHA approach up to at least
1800 K. Our descriptor for Gδ(T) can be readily applied to any of
the more than one million structures with tabulated DFT total
energy, enabling the high-throughput prediction of temperature-
dependent thermodynamics across a wide range of compositions
and temperatures.

Utilizing this descriptor, we demonstrate the accurate predic-
tion of reaction energetics for a number of solid-state reactions,
including a reaction network of several competing reactions in
the context of thermochemical ammonia synthesis. This
demonstrates how the descriptor can be incorporated with
existing materials databases and tabulated thermochemical data
for non-solids to predict the equilibrium products for an arbitrary
reaction as a function of temperature. By applying the descriptor
to ICSD compounds in the Materials Project database, we obtain
the first comprehensive look at materials stability, providing a
quantitative determination of how narrowly nature and inorganic
synthesis have explored far-from-equilibrium materials and
providing guidance for compositional considerations in realizing
new metastable materials. While thermodynamic stability is the
primary criterion used in high-throughput computational
screening of materials to predict the likelihood of a given material
being synthesizable, the interplay of thermodynamics with several
other criteria, such as kinetics and non-equilibrium process
conditions or starting precursors, exhibit a stronger influence
over the synthesizability of materials, and currently, there is not a
universal and well-defined metric for synthesizability3,46,48,52–54.
Importantly, the ~50 meV atom−1 resolution in predicting Gδ(T)
achieved by our descriptor exceeds the accuracy of the compu-
tational methods that currently predict and populate ΔHf in
materials databases. Therefore, when combining Gδ(T) with ΔHf
to determine the Gibbs formation energy, ΔGf(T), errors in these
approaches will be additive, emphasizing the need for new or
beyond-DFT methods to calculate ΔHf when extremely high
accuracy is required for a given application. However, there are
many examples where DFT-computed ΔHf was used successfully
to realize new materials55–57 and the incorporation of tempera-
ture effects using the SISSO-learned descriptor for Gδ(T) should
only enhance these efforts.

Methods
Data retrieval. Gibbs energies were extracted from the FactSage29 experimentally
determined thermochemical database for 309 solid compounds and from the
PhononDB16 ab initio calculated thermochemical database for 131 additional solid
compounds (12 hydrides, 26 carbides, 31 nitrides, 104 oxides, 43 fluorides, 26
phosphides, 47 sulfides, 36 chlorides, 17 arsenides, 30 selenides, 40 bromides, 18
antimonides, 26 tellurides, 34 iodides; 313 binary compounds, 126 ternary com-
pounds, and 1 quaternary compound—see Supplementary Data 1 for all com-
pounds) and 83 elements. Compound data were extracted only at temperatures
where the 298 K solid structure persists as reported in FactSage. Elemental data was
obtained for the phase (solid crystal structure, liquid, or gas) with the minimum
Gibbs energy at a given temperature. Because the 298 K enthalpy of formation,
ΔHf, is well-predicted for compounds using high-throughput DFT along with
appropriate corrections30–33 and readily available for millions of structures in
existing materials databases, the Gibbs energy was referenced with respect to ΔHf
(Eq. 1).

Feature retrieval. Nine primary features were considered for this work—five
tabulated elemental properties (electron affinity, first ionization energy, covalent
radius, Pauling electronegativity, and atomic mass) extracted from pymatgen58 and
WebElements (http://www.webelements.com); two calculated properties (atomic
volume and band gap) extracted from the Materials Project database; one
experimental property (ΔHf), and temperature. The five tabulated elemental
properties were formulated into compound-specific properties using each of three
transformations. For elemental feature, x, we define three forms of averaging—the

stoichiometrically weighted mean (avg), the stoichiometrically weighted harmonic
mean, akin to the reduced mass (red), and the stoichiometrically weighted mean
difference (diff):

xavg ¼
1

PN
i¼1 αi

XN

i

αixi ð5Þ

xred ¼
1

ðN " 1Þ
PN

i¼1 αi

XN

i≠j

αi þ αj
# $ xixj

xi þ xj
ð6Þ

xdiff ¼
1

ðN " 1Þ
PN

i¼1 αi

XN

i≠j

αi þ αj
# $

jxi " xjj ð7Þ

where when considering a compound, AaBbCc, we define α as the vector of coef-
ficients [a, b, c] and N as the length of α. For example, for CaTiO3, α= [1,1,3] and
N= 3.

Descriptor identification. The SISSO approach28 was applied to identify the
descriptor for Gδ shown in Eq. (3) using 262 of the 309 compounds from FactSage
with experimentally measured Gδ. To identify this descriptor an initial feature-
space, Φ0, included 19 features—the five tabulated elemental properties mapped
onto each of the three functional forms (Eqs. 5–7), along with the linear forms of
atomic volume, band gap, formation enthalpy, and temperature. Two iterations of
descriptor construction were performed using an operator space of [+, −, |−|, *, /,
exp, ln, −1, 2, 3, 0.5]. Candidate descriptors were constructed by iteratively applying
these operators to Φ0 while conserving the units of constructed features. The first
iteration of descriptor construction yielded a space, Φ1, with ~600 candidate
descriptors and the second iteration a space, Φ2, of ~600,000 candidate descriptors.
SISSO was then performed on Φ2 with a subspace size of 2,000 and three descriptor
identification iterations, thereby producing the three-dimensional (3D) descriptor
(i.e., three fit coefficients not including the intercept) in Eq. (4). In the first
iteration, sure independence screening (SIS) was used to select the 2,000 descriptors
S1D from Φ2 having the highest correlation with Gδ. Within S1D, ‘0-norm reg-
ularized minimization, SO(‘0), was used to identify the best 1D descriptor. This 1D
descriptor is then used to predict the training set and the array of residuals, R1, is
generated from this prediction. Now with R1 as the target property (instead of Gδ),
SIS identifies a new subspace S2D of 2,000 additional descriptors. SO(‘0) then
selects the best-performing 2D descriptor from S1D ∪ S2D and R2 is generated as the
residuals using this 2D descriptor to predict the training set. This procedure is
repeated a third time to yield the 3D descriptor shown in Eq. (4). Therefore, this

descriptor is selected among a space of
6000
3

( )
or ~3 × 1010 candidate 3D

descriptors.
Importantly, all aspects of the SISSO selection algorithm were performed on the

training set of 262 compounds with experimentally measured Gibbs energies,
leaving an excluded test set of 47 compounds with experimentally measured Gibbs
energies in reserve to evaluate the predictive quality of the selected descriptor
(Fig. 2). An additional 131 compounds with QHA-calculated Gδ(T) not present in
the training or test sets were also compared with the SISSO-learned Gδ(T) (Fig. 3).

Descriptor sensitivity. While the random splitting of the experimental set into
training and test sets was performed only once, comparing the relevant properties
for each set reveals that they are statistically similar, suggesting the model and
SISSO process would yield similar results for an arbitrary random split of the
experimental set (Supplementary Fig. 3). To assess the robustness of the model on
diverse training and test sets, we repeated the random split of the experimental set
1,000 times and evaluate the performance of Eq. (4) on each set. The MAD spans
37–42 meV atom−1 on the 85% training set and 26–54 meV atom−1 on the 15%
test set, demonstrating that the reported 38 meV atom−1 for training and 46 meV
atom−1 for testing (Fig. 2) are not outliers. As an added demonstration, the ran-
dom split of the experimental set and subsequent SISSO selection process was
repeated 12 times. In 10/12 runs, the descriptor shown in Eq. (4) appears in the top
3,000 of ~3 × 1010 models evaluated (top ~0.00001%) in terms of root mean square
deviation (RMSD) on the training set. Notably, there are many cases where very
slight deviations of Eq. (4) also appear in the top models—e.g., replacing ln(T) with
T or T0.5. To validate the significance of the three features that comprise the
descriptor—temperature, reduced mass, and atomic volume—we assess what
fraction of the top 3,000 models contain these features for each of the 12 random
train/test splits. Temperature is found to occur in 100% of the top models for each
of the 12 random splits. Reduced mass and atomic volume each appear in ~86% of
the top 3,000 models on average over the 12 random splits. This analysis was
conducted on only the very best models (top ~0.00001%) and reveals the sig-
nificance of these three properties in predicting Gδ to be robust to the random split
of the experimental data used to train and test the descriptor. Notably, the first
term in Eq. (4), Tln(V), appears as the feature with the highest correlation with Gδ

in all of the 12 random train/test splits.
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Comparing to QHA. QHA-calculated G(T) was extracted from the 2015 version of
PhononDB16 for all compounds with calculated thermal properties. Because a
number of approximations are used to calculate ΔHf from DFT calculations, to
isolate the temperature-dependent Gibbs energy for comparison to our descriptor,
Gδ

QHA(T) was calculated as Gδ(T)=G(T)—G(0 K).

Stability analysis. For the generation of Figs. 5 and 6, all 34,556 entries (struc-
tures) in the Materials Project which have reported formation energies and ICSD
numbers were retrieved. For each entry, the temperature-dependent formation
energy was calculated as follows:

ΔGf ;predðTÞ ¼
ΔHf ;MP;T ¼ 0K

ΔHf ;MP þ Gδ
SISSOðTÞ "

PN

i
αiGi;expðTÞ;T≠0K

8
><

>:

9
>=

>;
ð8Þ

FactSage elemental energies were used as Gi,exp. For all entries, ΔGf,pred(T) was
evaluated at 0, 300, 600, 900, 1200, 1500 and 1800 K. To avoid overweighting the
analysis to compounds which have many polymorphs, the lowest (most negative)
ΔGf,pred(T) was retained for the analysis at each temperature and for each unique
composition (chemical formula). This resulted in 29,525 unique compositions from
34,556 structures with ICSD numbers and reported formation energies in Materials
Project. To avoid potentially spurious entries in the ICSD, only the lowest 90% of
metastable compositions (with respect to the Gibbs decomposition energy, ΔGd)
were considered. Python was used to construct all possible convex hull phase
diagrams and quantify ΔGd.

Structure considerations. For training, we used 0 K ground-state structures (and
magnetic configurations) reported in Materials Project. From this calculation
result, we retrieved the volume (per atom) that is then used at all temperatures to
generate Gδ(T) as shown in Eq. (4). For a given composition, one could compute
Gδ(T) for any number of structural or magnetic configurations and compare the G
(T) that results. For the purposes of training and testing, we consider only the
calculated ground-state because this is likely the approach that would be used in
practice for the application of the model to new materials which have available
calculated but not experimental data.

Application of the descriptor. To obtain the Gibbs formation energy for a given
structure, one must first perform a DFT total energy minimization of the
structure. From this, the atomic volume is determined as the volume of the
calculated cell divided by the number of atoms in the calculated cell. Gδ can then
be computed by Eq. (4). Calculating the Gibbs energy, G(T), using Eq. (1)
requires the formation enthalpy, ΔHf, calculated using DFT. If the analysis of
interest concerns only one composition (chemical formula), then this is the final
step and the relative energies of all structures with this composition can be
compared using G(T). If the analysis of interest considers various compositions
(e.g., for convex hull stability or thermochemical reaction analysis), the ele-
mental energies must be subtracted to obtain the Gibbs formation energy,
ΔGf(T) by Eq. (2). Notably, ΔHf and volumes calculated by DFT are tabulated for
many thousands of structures and the elemental G(T) are also tabulated for at
least 83 elements. An important point is that users of the descriptor for Gδ(T) are
free to generate ΔHf and volumes for any number of structural or magnetic
configurations for a given composition and compare how G(T) might be sen-
sitive to the changes in structure and magnetism.

Extension to new materials. On the experimental training set of 262 compounds,
the mean absolute deviation between experiment and the descriptor is 38 meV
atom−1 (Fig. 2). This increases slightly to 46 meV atom−1 (Fig. 2) on the experi-
mental test set and to 60 meV atom−1 on the computed (QHA) test set (Fig. 3).
The residuals with respect to experiment are also mostly normally distributed,
suggesting no systematic error in the model. The performance on the test set
compounds is a demonstration of validated prediction accuracy or uncertainty on
new predictions. These approximate error bars can be expected on additional new
predictions to the extent that the sets used for training and testing are comparable
to the new materials being predicted. The set we use for training and testing is quite
diverse—83 unique elements, binaries and multinaries, magnetic and nonmagnetic,
metallic and insulating, etc. Additionally, the descriptor is relatively simple, having
only four fit parameters (including the intercept) and three features (properties)
that it depends upon. However, it has not been benchmarked for non-
stoichiometric compounds or compounds with defects. For example, one could not
expect to obtain the temperature-dependent defect formation energy using our
descriptor because this was not benchmarked. Our model is also not capable of
predicting the melting point of compounds. Gδ(T) is for the solid phase and can be
obtained even well above a compound’s melting point, where the liquid phase has
more negative Gibbs energy. As alluded to in the main text, the extension of the
descriptor to correctly predict polymorphic phase transitions or temperature-
driven magnetic transitions is not practical because the descriptor depends only on
the mass, density, and temperature and the magnitude of the energy change for
these transitions is typically smaller than the expected error bars of the descriptor.

We report substantial evidence that the descriptor is predictive for stability of
compounds relative to one another and for the prediction of thermochemical
reaction equilibria over a wide range of stoichiometric solid compounds with a
diverse set of chemical and physical properties.

Data availability
Data (via public repository), code, and associated protocols are available in a github
repository (github.com/CJBartel/predict-gibbs-energies) corresponding to the imple-
mentation and application of the model as described within this work.
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