
ARTICLE OPEN

A critical examination of compound stability predictions
from machine-learned formation energies
Christopher J. Bartel 1✉, Amalie Trewartha1, Qi Wang2, Alexander Dunn 1,2, Anubhav Jain 2 and Gerbrand Ceder 1,3✉

Machine learning has emerged as a novel tool for the efficient prediction of material properties, and claims have been made that
machine-learned models for the formation energy of compounds can approach the accuracy of Density Functional Theory (DFT).
The models tested in this work include five recently published compositional models, a baseline model using stoichiometry alone,
and a structural model. By testing seven machine learning models for formation energy on stability predictions using the Materials
Project database of DFT calculations for 85,014 unique chemical compositions, we show that while formation energies can indeed
be predicted well, all compositional models perform poorly on predicting the stability of compounds, making them considerably
less useful than DFT for the discovery and design of new solids. Most critically, in sparse chemical spaces where few stoichiometries
have stable compounds, only the structural model is capable of efficiently detecting which materials are stable. The nonincremental
improvement of structural models compared with compositional models is noteworthy and encourages the use of structural
models for materials discovery, with the constraint that for any new composition, the ground-state structure is not known a priori.
This work demonstrates that accurate predictions of formation energy do not imply accurate predictions of stability, emphasizing
the importance of assessing model performance on stability predictions, for which we provide a set of publicly available tests.
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INTRODUCTION
Machine learning (ML) is emerging as a novel tool for rapid
prediction of material properties1–6. In general, these predictions
are made by fitting statistical models on a large number of data
points. Because of the scarcity of well-curated experimental data
in materials science, these input data are often obtained from
Density Functional Theory (DFT) calculations housed in one of the
many open materials databases7–12. In principle, once these
models are trained on this immense set of quantum chemical
data, the determination of properties for new materials can be
made in orders of magnitude less time using the trained models
compared with computationally expensive DFT calculations.
Of particular interest is the use of ML to discover new materials.

The combinatorics of materials discovery make for an immensely
challenging problem—if we consider the possible combinations
of just four elements (A, B, C, and D), from any of the ~80 elements
that are technologically relevant, there are already ~1.6 million
quaternary chemical spaces to consider. This is before we consider
such factors as stoichiometry (ABCD2, AB2C3D4, etc.) or crystal
structure, each of which add substantially to the combinatorial
complexity. The Inorganic Crystal Structure Database (ICSD) of
known solid-state materials contains ~105 entries13, several orders
of magnitude less than the 1010 quaternary compositions
identified as plausible using electronegativity- and charge-based
rules14. This suggests that (1) there is ample opportunity for new
materials discovery and (2) the problem of finding stable materials
may resemble the needle-in-a-haystack problem, with many
unstable compositions for each stable one. The immensity of this
problem is a natural fit for high-throughput ML techniques.
In this work, we closely examine whether recently published ML

models for formation energy are capable of distinguishing the
relative stability of chemically similar materials and provide a
roadmap for doing the same for future models. We show that

although the formation energy of compounds from elements can
be learned with high accuracy using a variety of ML approaches,
these learned formation energies do not reproduce DFT-
calculated relative stabilities. While the accuracy of these models
for formation energy approaches the DFT error (relative to
experiment), DFT predictions benefit from a systematic cancella-
tion of error15,16 when making stability predictions, while ML
models do not. Of particular concern for most ML models is the
high rate of materials predicted to be stable that are not stable by
DFT, impeding the use of these models to efficiently discover new
materials. As a result, we propose more critical evaluation
methods for ML of thermodynamic quantities.

RESULTS
The relationship between formation energy and stability
A necessary condition for a material to be used for any application
is stability (under some conditions). The thermodynamic stability
of a material is defined by its Gibbs energy of decomposition, ΔGd,
which is the Gibbs formation energy, ΔGf, of the specified material
relative to all other compounds in the relevant chemical space.
Temperature-dependent thermodynamics are not yet tractable
with high-throughput DFT and have only sparsely been addressed
with ML17, so material stability is primarily assessed using the
decomposition enthalpy, ΔHd, which is approximated as the total
energy difference between a given compound and competing
compounds in a given chemical space15,16,18,19. For the purpose of
this study, we will directly compare ML predictions and DFT
calculations of ΔHd, hence the lack of entropy contributions is not
an issue.
The quantity ΔHd is obtained by a convex hull construction in

formation enthalpy (ΔHf)-composition space. Figure 1a shows an
example for a binary A–B space, having three known compounds,
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A4B, A2B, and AB3. The convex hull is the lower convex enthalpy
envelope which lies below all points in the composition space
(blue line). Stable compositions lie on the convex hull, and
unstable compositions lie above the hull. A4B is unstable (above
the hull), so ΔHd > 0 and is calculated as the distance in ΔHf
between A4B and the convex hull of stable points. AB3 is stable (on
the hull), so ΔHd < 0 and is calculated as the distance in ΔHf
between AB3 and a hypothetical convex hull constructed without
AB3 (dashed line). |ΔHd| is therefore the minimum amount that ΔHf
must decrease for an unstable compound to become thermo-
dynamically stable or the maximum amount that ΔHf can increase
for a stable compound to remain stable. We used ΔHd in this work
instead of the more common, “energy above the hull,” because
the former provides a distribution of values for stable compounds,
whereas the latter is equal to 0 for all stable compounds. The
convex hull construction, described here for a binary system,
generalizes for chemical spaces comprised of any number of
elements.
Hence, while ΔHf quantifies to what extent a compound may

form from its elements, the thermodynamic quantity that controls
phase stability is ΔHd and arises from the competition between
ΔHf for all compounds within a chemical space. As we show later,
while formation enthalpies can be of the order of several eV the
value of ΔHd is typically 1–2 orders of magnitude smaller. In
addition, thermodynamic stability is highly nonlinear in ΔHd
around zero, as negative values indicate stable compounds,
whereas positive values are unstable or metastable compounds.
Although ΔHd determines stability, the standard thermody-

namic property that is predicted by ML models is the absolute
ΔHf

20–29. This is in large part because ΔHf is intrinsic to a given
compound, whereas ΔHd inherently depends upon a compound’s
stability relative to neighboring compositions, making ΔHd less
robust to learn directly.
Using data available in the Materials Project (MP)16, we applied

the convex hull construction to obtain ΔHd for 85,014 inorganic
crystalline solids (the majority of which are in the ICSD) and
compare ΔHd with ΔHf in Fig. 1b. It is clear that effectively no
linear correlation exists between ΔHd and ΔHf, except for the trivial
case where only a single compound exists in a chemical space
(ΔHd= ΔHf), which is true for only ~3% of materials in MP. While
ΔHf somewhat uniformly spans a wide range of energies (mean ±
average absolute deviation=−1.42 ± 0.95 eV/atom), ΔHd spans
much smaller energies (0.06 ± 0.12 eV/atom), suggesting ΔHd is
the more sensitive or subtle quantity to predict (histograms of ΔHf
and ΔHd are provided in Fig. 1b). Still, while no linear correlation
exists between ΔHd and ΔHf, and ΔHd occurs over a much smaller
energy range, it would be possible for ΔHf models to predict ΔHd

as long as the relative differences in ΔHf within a given chemical
space are predicted with accuracy comparable with the range of
variation in ΔHd or if they would benefit from substantial error
cancellation when comparing the energies of compounds with
similar chemistry.

Learning formation energy from chemical composition
ML material properties requires that an arbitrary material is
“represented” by a set of attributes (features). This representation
can be as simple as a vector corresponding to the fractional
amount of each element in the compound (e.g., Li2O= [0, 0, 2/3, 0,
0, 0, 0, 1/3, 0, 0, …], where the length of the vector is the number
of elements in the periodic table), or a vector that includes
substantial physical or chemical information about the material. In
the search for new materials, the structure is rarely known a priori,
and instead a list of compositions with unknown structure is
screened for stability, i.e., the possibility that a thermodynamically
stable structure exists at that composition. In this case, the
material representation is constructed only from the chemical
formula without including properties such as the geometric (i.e.,
lattice and basis) or electronic structure. These models, which take
as input the chemical formula and output thermodynamic
predictions, are henceforth referred to as compositional
models here.
In this work, we assessed the potential for five recently

introduced compositional representations—Meredig20, Magpie21,
AutoMat22, ElemNet23, and Roost24—to predict the stability of
compounds in MP. Meredig, Magpie, and AutoMat include
chemical information for each element in their material repre-
sentations from quantities such as atomic electronegativities, radii,
and elemental group. Each of these compositional representations
were trained using gradient-boosted regression trees (XGBoost30).
ElemNet and Roost differ in that no a priori information other than
the stoichiometry is used as input. For ElemNet, a deep learning
architecture maps the stoichiometry input into formation energy
predictions. For Roost, the stoichiometric representation and fit are
simultaneously learned using a graph neural network. In addition,
we included a baseline representation for comparison, ElFrac,
where the representation is simply the stoichiometric fraction of
each element in the formula, trained using XGBoost30. Because
compositional models necessarily make the same prediction for all
structures having the same formula, all analysis in this work was
performed using the lowest energy (ground-state) structure in MP
for each available composition. Additional details on the training
of each model and the MP dataset is available in the “Methods”
section.

Fig. 1 Distinction between formation and decomposition energies. a Illustration of the convex hull construction to obtain the
decomposition enthalpy, ΔHd, from the formation enthalpy, ΔHf. b The decomposition enthalpy, ΔHd, shown against the formation enthalpy,
ΔHf, for 85,014 ground-state entries in Materials Project, indicating effectively no correlation between the two quantities. The strong linear
correlation that is present at ΔHd=ΔHf arises for chemical spaces that contain only one compound (~3% of compounds). These compounds
were excluded from the correlation coefficient, R2, determination. A normalized histogram of ΔHf (ΔHd) is shown above (along the right side
of) b. Both histograms are binned every 10 meV/atom.
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Parity plots comparing ΔHf in MP (ΔHf,MP) to machine-learned
ΔHf (ΔHf,pred) for each model are shown in Fig. 2. It is clear that
each published representation substantially improves upon the
baseline ElFrac model, decreasing the mean absolute error (MAE)
by 27–74%. This increased accuracy is attributed to the increased
complexity of the representation. For most models, the MAE
between MP and these ML models is comparable with the
expected numerical disagreement between MP and experimen-
tally obtained ΔHf

8,16,31–33, implying a substantial amount of the
information required to determine ΔHf is contained in the
composition (and not the structure). The success of ML models
for predicting ΔHf is not surprising considering the historical
context of simple heuristics that perform relatively well at
predicting the driving force for the formation of compounds
from elements—e.g., the Miedema model34.

Implicit stability predictions from learned formation enthalpies
While the MAE of the ML-predicted ΔHf approaches the MAE
between DFT and experiment for this quantity (~0.1–0.2 eV/
atom)8,16,31,32,35, the use of ΔHf for stability predictions requires
that the relative ΔHf between chemically similar compounds is
predicted more accurately. To assess the accuracy of the relative
ΔHf, we reconstructed, for each ML model, the convex hulls for all
chemical spaces using ΔHf,pred. Parity plots for ΔHd are shown in
Fig. 3. Even though the quantity ΔHd is on average much smaller
than ΔHf, the MAE in predicting it is almost identical to the error in
predicting ΔHf (Fig. 2), indicating very little error cancellation for
the ML models when energy differences are taken in a chemical
space, which is in contrast to the beneficial error cancellation for

stability predictions with DFT15,16. In contrast to ΔHf, where all
representations substantially improve the predictive accuracy
from the baseline ElFracmodel, for ΔHd, four of the five models (all
except Roost) only negligibly improve upon the baseline model
with MAE of ~0.10–0.14 eV/atom. Importantly, for the purposes of
predicting stability, a difference of ~0.1 eV/atom can be the
difference between a compound that is readily synthesizable and
one that is unlikely to ever be realized36,37.
DFT calculations benefit from a systematic cancellation of errors

that leads to much smaller errors for ΔHd than for ΔHf, with MAE
for ΔHd as low as ~0.04 eV/atom for a substantial fraction of
decomposition reactions16. Unfortunately, ML models do not
similarly benefit from this cancellation of errors and instead
appear to learn clusters in material space that have similar ΔHf, but
they are generally unable to distinguish between stable and
unstable compounds within a chemical space. It is notable that
Roost substantially improves upon the other models. However,
there are still strong signatures of inaccurate stability predictions
in its parity plot (Fig. 3), most notably in the ~vertical line at
ΔHd,pred= 0 and ~horizontal line at ΔHd,MP= 0. These two lines
indicate substantial disagreement between the actual and
predicted stabilities for many compounds, despite the relatively
low MAE.
The inability for compositional models to properly distinguish

relative stability is further demonstrated by assessing how well the
models classify compounds as stable (on the convex hull) or
unstable (above the hull), as shown in Fig. 4. Overall, 60% of the
compounds in the MP dataset are not on the hull, so the
classification accuracy of a naive model that states that everything
is unstable would be 60%. Five of the six models (all except Roost)

Fig. 2 Performance of machine-learned models for formation energy. Parity plot for formation enthalpy predictions using six different
machine learning models that take as input the chemical formula and output ΔHf. ElFrac refers to a baseline representation that parametrizes
each formula only by the stoichiometric coefficient of each element. Meredig, Magpie, AutoMat, ElemNet, and Roost refer to the representations
published in refs. 20–24, respectively. ΔHf,pred corresponds with ML predictions for aggregated hold-out sets during five-fold cross-validation of
the Materials Project dataset (see “Methods” for details). ΔHf,MP refers to the formation energy per atom in the MP database. The absolute error
on ΔHf is shown as the colorbar and the mean absolute error (MAE) is shown within each panel.

C.J. Bartel et al.

3

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2020) ���97�



only marginally improve upon this extremely naive model
accuracy (58–65%). Strikingly, Roost considerably outperforms
the other compositional models (76% accuracy), despite using
stoichiometry alone as input. Plausibly, this superior performance
is due to the use of weighted soft attention mechanisms during
training of the representation38. Although only the nominal
chemical composition (element fraction) is used as input, the
model learns a more meaningful representation of this input
composition on a case-by-case basis during training. This is in
contrast to the other compositional models, which have fixed
stoichiometric representations and either include hand-picked
elemental attributes such as electronegativity (Meredig and
Magpie) or use deep learning (ElemNet). Notably, AutoMat uses a
two-step process: first it rationally selects the most relevant
elemental attributes from a large list using a decision tree model
and then fits a regression model with the reduced feature space.
Considering the modest classification accuracy by AutoMat (65%),
despite the wide range of elemental attributes considered in its
optimization, we speculate that further improvements in the
clever selection of these attributes is unlikely to lead to
transformative improvements in predicted stabilities. Instead,
major improvements to compositional formation energy models
will likely result from qualitative changes in model architecture, as
in Roost, and not from optimizing the selection of elemental
attributes.
While Roost improves considerably upon other compositional

models, the accuracy, F1 score, and false positive rate taken
together do not inspire much confidence that any of these models
can accurately predict the stability of solid-state materials (Fig. 4).
Of particular concern is the high false positive rates of 25–38%.
This metric provides the likelihood that a compound predicted to
be stable will not actually be. Further aggravating this situation is

that the false positive rate reported here for the models is greatly
underestimated compared with the false positive rate that is
expected for new materials discovery. The MP database is largely
populated with known materials extracted from the ICSD, and this
results in ~40% of the entries in MP being on the hull. The fraction
of all conceivable hypothetical materials (from which new
materials will be discovered) that are stable is likely several orders
of magnitude lower than 40%. This necessitates that searches for
new materials cover a huge number of possible compounds, and
false positive rates in excess of 25% would lead to an enormous
amount of predicted materials which are not stable, limiting the
ability for these ML models to efficiently accelerate new materials
discovery.
A key consideration when discussing the accuracy in classifying

compounds as stable or unstable is the choice of threshold for
stability, which we have chosen to be ΔHd= 0. In materials
discovery or screening applications, compounds are often
considered potentially synthesizable even for ΔHd > 0 to consider
potential inaccuracies in the predicted stabilities and account for a
range of accessible metastability36,37. To probe the effects of
moving this threshold for stability to higher or lower values of
ΔHd, we show the receiver operating characteristic curves for each
model in Supplementary Fig. 1. As the threshold for stability
moves to larger positive values, increases in model accuracy are
concomitant with an increase in the rate of false positives and a
decrease in the confidence that the compounds predicted to be
stable are actually accessible. Conversely, as the threshold
decreases below zero, the accuracy and false positive rate
decrease together as less and less compounds meet this stricter
threshold for stability. Ultimately, the conclusions we draw from
setting a stability threshold of ΔHd= 0 are not affected by
alternative stability thresholds.

Fig. 3 Application of predicted formation energies to decomposition energies. Parity plot for decomposition enthalpy predictions. ΔHd,MP
results from convex hulls constructed with ΔHf,MP (Fig. 2). ΔHd,pred is obtained from convex hulls constructed with ΔHf,pred (Fig. 2). The
annotations are the same as in Fig. 2.
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Predicting stability in sparse chemical spaces
While quantifying the accuracy of ML approaches on the entire MP
dataset is instructive, it does not resemble the materials discovery
problem because it assesses only the limited space of composi-
tions that have been previously explored and therefore have
many stable compounds. In order to simulate a realistic materials
discovery problem, we identified a set of chemical spaces within
the MP dataset that are sparse in terms of stable compounds.
Lithium transition metal (TM) oxides are used as the cathode
material for rechargeable Li-ion batteries and have attracted
substantial attention for materials discovery in recent years. In
particular, Li–Mn oxides have been considered as an alternative to
LiCoO2 utilizing less or no cobalt: e.g., spinel LiMn2O4

39, layered
LiMnO2

40, nickel–manganese–cobalt cathodes41, and disordered
rock salt cathodes42. For this work, the quaternary space,
Li–Mn–TM–O with TM ∈ {Ti, V, Cr, Fe, Co, Ni, Cu}, is an attractive
space to test the efficacy of these models, as it contains only
9 stable compounds and 258 more that are unstable in MP. We
tested the potential for ML models to discover these stable
compounds by excluding all 267 quaternary Li–Mn–TM–O
compounds from the MP dataset and repeating the training of
each model on ΔHf with the remaining 84,747 compounds. We
then applied each trained model to predict ΔHf for the excluded
Li–Mn–TM–O compounds and assessed their stability. Importantly,
we are again concerned with DFT-calculated stability at 0 K, so we
are not considering the potential for compounds in this
quaternary space to be stabilized due to entropic effects (e.g.,
configurational disorder).

The ΔHf parity plot for these 267 Li–Mn–TM–O compounds is
shown in Supplementary Fig. 2 and reveals that all models have a
higher accuracy predicting ΔHf for this subset of materials than for
the entire dataset (Fig. 3). The improved prediction of ΔHf is likely
because the compounds in this subset have strongly negative ΔHf
and are well represented by the thousands of TM and lithium-
containing oxides that comprise the MP dataset. Despite this
improved accuracy on ΔHf, the models all have alarmingly poor
performance in predicting ΔHd. In Fig. 5, we show that none of the
models are able to correctly detect more than three of the nine
stable compounds, and even for the most successful model by this
metric (AutoMat), the 3 true positives come with 24 false positives.
It is noteworthy that in this experiment, the models are given a
large head-start towards making these predictions because the
composition space under investigation is restricted to those
compounds that have DFT calculations tabulated in MP, which is
biased towards stability compared with the space of all possible
hypothetical compounds.
To account for the MP stability bias and more closely simulate a

realistic materials discovery problem, we assessed the potential for
these models to identify the nine stable MP compounds when
considering a much larger composition space. Using the approach
defined in ref. 14 we produced 13,392 additional quaternary
compounds in these 7 Li–Mn–TM–O chemical spaces that obey
simple electronegativity- and charge-based rules. For this
expanded space of quaternary compounds, we used each
compositional model (trained on all of MP minus the 267
Li–Mn–TM–O compounds) to predict ΔHf and assessed their

Fig. 4 Performance of predicted formation energies on stability classification. Classification of materials as stable (ΔHd ≤ 0) or unstable
(ΔHd > 0) using each of the six compositional models. “Correct” predictions are those for which the ML models and MP both predict a given
material to be either stable or unstable. The histograms are binned every 5meV/atom with respect to ΔHd,MP to indicate how the correct and
incorrect predictions and the number of compounds in our dataset vary as a function of the magnitude above or below the convex hull. Acc is
the classification accuracy. F1 is the harmonic mean of precision and recall. FPR is the false positive rate. The moving average of the accuracy
(computed within 20meV/atom intervals) as a function of ΔHd,MP is shown as a blue line (right axis). As expected, the accuracy is lowest near
the chosen stability threshold of ΔHd,MP= 0.
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stability (Table 1). The compositional models each predict ~4–5%
of these compounds to be stable, and all of the models fail to
accurately predict the stability of more than two of the nine
compounds that are actually stable in MP. A remarkable 139
compounds are predicted to be stable by all six models and 1372
unique compounds are predicted to be stable by at least one
model. While it is likely that the space of stable quaternary
compounds in the Li–Mn–TM–O space has not yet been fully
explored in MP (or by extension, the ICSD), our intuition suggests
it is highly unlikely that the number of new stable materials in this

well-studied space is orders of magnitude larger than the number
of known stable materials. The false positive rates obtained on the
entire MP dataset shown in Fig. 4 suggest ~25–38% of these
predicted stable Li–Mn–TM–O compounds are not actually stable,
and these rates are likely underestimated, as discussed previously.
The magnitude of compounds predicted to be stable by the ML
models, and their false positive rates, imply that these models will
inevitably identify a large number of unstable materials as
candidates for further analysis (either with DFT calculations or
experimental synthesis). This substantially impedes the capability

Fig. 5 Applying predicted formation energies to stability predictions in a sparse chemical space. Re-training each model on all of MP
minus 267 quaternary compounds in the Li–Mn–TM–O chemical space (TM ∈ {Ti, V, Cr, Fe, Co, Ni, Cu}) and obtaining ΔHd using the predicted
ΔHf for each of the excluded compounds (ΔHd,pred) and comparing with stabilities available in MP, ΔHd,MP. FP = false positive, TP = true
positive, TN = true negative, FN = false negative.

Table 1. Stability predictions in the expanded Li–Mn–TM–O (TM ∈ {Ti, V, Cr, Fe, Co, Ni, Cu}) composition space.

ElFrac Meredig Magpie AutoMat ElemNet Roost

Candidate compounds 13,659 13,659 13,659 13,659 13,659 13,659

Stable compounds in MP 9 9 9 9 9 9

Compounds predicted stable 685 528 619 541 556 507

% predicted stable 5.0 3.9 4.5 4.0 4.1 3.7

Pred. stable and stable in MP 1 1 1 1 2 1

Candidate compounds were generated by combining all quaternary MP compounds in this space along with quaternary compounds generated by the
approach described in ref. 14, resulting in 13,659 candidates. Among these candidates, nine compounds are calculated to be stable in MP. The stability of all
candidates was assessed using each compositional model for ΔHf. Note that while all models correctly predict one of nine MP-stable compounds to be stable,
this compound is not the same for all models.
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of these formation energy models to accelerate the discovery of
novel compounds that can be synthesized.

Direct training on decomposition energy
An alternative approach to consider is to train directly on ΔHd

instead of using ML-predicted ΔHf to obtain ΔHd through the
convex hull construction. Note that direct training on ΔHd is
complicated by the fact that ΔHd for a given compound is
dependent upon ΔHf for other compounds within a given
chemical space. This is unlike ΔHf, which is intrinsic to a single
compound. To assess the capability of each representation to
directly predict stability, we repeated the analysis shown in
Figs. 3–5 and Table 1 but training on ΔHd. The performance of
each model on the MP Li–Mn–TM–O dataset is shown in Fig. 6, the
performance on the expanded Li–Mn–TM–O space in Supple-
mentary Table 1, and results for ΔHd on the entire MP dataset are
shown in Supplementary Figs. 3 and 4. While the prediction
accuracy (MAE and stability classification) on the entire MP dataset
is typically comparable with or slightly better when training on
ΔHd (Supplementary Figs. 3 and 4) instead of ΔHf (Figs. 3 and 4),
the capability of the trained model to predict stability in sparse
chemical spaces is even worse than when training on ΔHf (Fig. 6
and Supplementary Table 1).
None of the models are able to identify even one of the nine

MP-stable quaternary compounds from the set of 267

Li–Mn–TM–O compounds in MP, and every model predicts all
267 Li–Mn–TM–O compounds to be unstable (Fig. 6). It is
especially notable that for all models except Roost and ElemNet,
the predictions for all 267 quaternary compounds fall in a very
small window (0.040 eV/atom < ΔHd,pred < 0.082 eV/atom), sug-
gesting the models only learn that all compounds in this space
should be within the vicinity of the convex hull and do nothing to
distinguish between chemically similar compounds. When the
space of potential compounds is expanded to 13,659 compounds,
only Roost and ElemNet predict any compound to be stable, but
again, none of the nine MP-stable compounds are predicted to be
stable by any model (Supplementary Table 1).
As an additional demonstration, all representations (except

Roost—see “Methods” for details) were also trained as classifiers
(instead of regressors), tasked with predicting whether a given
compound is stable (ΔHd ≤ 0) or unstable (ΔHd > 0). The accura-
cies, F1 scores, and false positive rates are tabulated in
Supplementary Table 2 and found to be only slightly better
(accuracies < 80%, F1 scores < 0.75, false positive rates > 0.15) than
those obtained by training on ΔHf (Fig. 4) or ΔHd (Supplementary
Fig. 4).
Beyond the poor performance associated with these models,

the direct prediction of ΔHd (or classification of stable/unstable) is
difficult to physically motivate because unlike ΔHf, ΔHd is not an
intrinsic property of a material but depends on the energy at other
compositions with which it may be in competition. This

Fig. 6 Applying predicted decomposition energies to stability predictions in a sparse chemical space. Re-training each model directly on
ΔHd on all of MP minus 267 quaternary compounds in the Li–Mn–TM–O chemical space (TM ∈ {Ti, V, Cr, Fe, Co, Ni, Cu}). Stability is determined
by these direct predictions of ΔHd,pred and compared with stabilities available in MP, ΔHd,MP. FP = false positive, TP = true positive, TN = true
negative, FN = false negative.
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nonlocality of ΔHd also depends on the completeness of a given
phase diagram: as new materials are discovered in a chemical
space, ΔHd is subject to change for any compound in that space,
even if that compound’s energy itself does not change,
complicating the application of ML models trained on ΔHd.

Revisiting stability predictions with a structural representation
In addition to compositional models, representations that rely on
the crystal structure for predicting formation energy have also
received substantial attention in recent years25,27–29,43–45. These
models perform a different task than compositional models
because they evaluate the property of a material given both the
composition and the structure. Nevertheless, it is interesting to
assess whether these structural models can predict stability with
improved accuracy relative to models that are given only
composition.
Here we take the crystal graph convolutional neural network

(CGCNN)25 as a representative example of existing structural
models. CGCNN is a flexible framework that uses message passing
over the atoms and bonds of a crystal (see “Methods” for training
details). In Fig. 7, we show the performance of CGCNN on the same
set of analyses as were shown for the compositional models in
Figs. 2–5: learning ΔHf (Fig. 7a), constructing convex hulls with
those predicted ΔHf to generate ΔHd (Fig. 7b), assessing the
capability of these ΔHd,pred values to classify materials as stable or
unstable (Fig. 7c), and probing the ability for this model to predict
stability in the sparse Li–Mn–TM–O space (Fig. 7d). It is clear that
CGCNN improves substantially upon the direct prediction of ΔHf
(Fig. 7a) and the implicit prediction of ΔHd (Fig. 7b), reducing the
MAE by ~50% compared with the best performing compositional
model (Roost). The extremely inaccurate predictions of ΔHd near
ΔHd,pred= 0 or ΔHd,MP= 0 that are observed in Fig. 3 for most
compositional models are also no longer present with CGCNN
(Fig. 7b). CGCNN displays an improved classification accuracy
(80%) and a narrow distribution of incorrect stability predictions,
only disagreeing with MP regarding the stability of compounds

within the vicinity of ΔHd,MP= 0 (Fig. 7c). Most impressively,
CGCNN is relatively successful at finding the needles in the
excluded Li–Mn–TM–O haystack, recovering five of the nine stable
compounds with only six false positives (Fig. 7d). In addition to the
improved predictive accuracy, the parity plot for this excluded set
looks fundamentally different than for the compositional models.
In the compositional models (Fig. 5), the parity plot is scattered,
and there is effectively no linear correlation between the actual
and predicted ΔHd, whereas for CGCNN, there is a strong linear
correlation (Fig. 7d).
The nonincremental improvement in stability predictions that

arises from including structure in the representation is a strong
endorsement for structural models and also sheds insight into the
structural origins of material stability. While the thermodynamic
driving force for forming a compound from its elements
(formation energy) can be learned with high accuracy from only
the composition, the structure dictates the subtle differences in
thermodynamic driving force between chemically similar com-
pounds and enables accurate ML predictions of material stability
(decomposition energy). However, the obvious limitation of this
approach is that it requires the structure as input, and the
structure of new materials that are yet to be discovered is not
known a priori. For example, because we do not know the ground-
state structure for an arbitrary composition, we cannot repeat the
test where we assess the ability of the ML model to find the stable
Li–Mn–TM–O compounds among a large set of candidate
compositions. Although CGCNN shows substantially improved
performance in predicting material stability, these results are
obtained using the DFT-optimized ground-state crystal structures
as input.

Quantifying error cancellation in ML models
While it is well known that DFT predictions of stability are
enhanced because of systematic error cancellation15,16, it is not
yet known if the errors made by ML formation energy models are
completely random or if they too exhibit some beneficial

Fig. 7 Performance of formation energies predicted using a structural representation. a Repeating the analysis shown in Fig. 2 using
CGCNN. Annotations are as in Fig. 2. b Repeating the analysis shown in Fig. 3 using CGCNN. Annotations are as in Fig. 3. c Repeating the
analysis shown in Fig. 4 using CGCNN. Annotations are as in Fig. 4. d Repeating the analysis shown in Fig. 5 using CGCNN. Annotations are as in
Fig. 5.
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cancellation of errors. In Fig. 8a, we plot a hypothetical convex hull
phase diagram in blue, labeled “ground truth.” Next, we represent
the effect of a systematic error in ΔHf by shifting all points up in
energy by the same amount (“systematic error,” green). The relative
stabilities of these systematically shifted points remain comparable
with the ground truth despite the error in each ΔHf, illustrating
beneficial cancellation of errors. Finally, we show the effect of a
random ΔHf error by shifting the ground truth ΔHf by the same
average magnitude as in the “systematic” case, but here in random
amounts for each point (purple, “random error”). In this case,
stabilities (ΔHd) for all points deviate substantially from the ground
truth because there is little beneficial cancellation of ΔHf errors.
The similar MAE on ΔHf (Figs. 2 and 7a) and ΔHd (Figs. 3 and 7b)

for all models despite the much smaller range of energies
spanned by ΔHd (Fig. 1b) make clear that the benefit of error
cancellation is not fully realized for the ML models. Further, the set
of tests on stability predictions discussed in this work (Figs. 4–6
and Table 1) show that the magnitude of error cancellation made
by the compositional ML models remains insufficient to enable
accurate stability predictions, especially in sparse chemical spaces.
It is not clear, however, whether the improved prediction of
stability by CGCNN arises from beneficial error cancellation within
each chemical space or from decreasing the overall MAE from
~0.06 eV/atom (for the best performing compositional model—
Roost) to ~0.03 eV/atom (for CGCNN).
To quantify the magnitude of error cancellation for the ML

models, it is essential to establish a “random error” baseline for
comparison. The random error baseline developed in this work
utilizes random perturbations of the ground truth ΔHf (ΔHf,MP),
where the perturbations were drawn from the discrete distribution
of ML errors, P[ΔHf,MP− ΔHf,pred], for each model. It follows that
ΔHf,rand= ΔHf,MP+ P[ΔHf,MP− ΔHf,pred] (ΔHf,pred is shown for each
compositional model in Fig. 2 and for CGCNN in Fig. 7a). With
these randomly perturbed ΔHf,rand, we repeated the convex hull
construction for all compounds in MP for comparison with the
analysis of ΔHd presented in Fig. 3 and stability classification
presented in Fig. 4 (both of which rely on ΔHf,pred). In Fig. 8b, the
MAEs on ΔHd and F1 scores for classifying compounds as stable
(ΔHd ≤ 0) or unstable (ΔHd > 0) are compared for predictions based
on ΔHf,pred and ΔHf,rand for all seven models. All models show
higher MAE on ΔHd and lower F1 scores using ΔHf,rand instead of
ΔHf,pred as input, demonstrating that the ML models do generally
exhibit some degree of error cancellation.
The extent of error cancellation is model-dependent, and the

worst-performing model in this work, ElFrac, exhibits the most
substantial relative error cancellation, with 148% higher MAE on ΔHd

and 14% lower F1 when using ΔHf,rand instead of ΔHf,pred. For ElFrac
(and to a lesser extent the other modestly performing compositional
models), the high error cancellation likely arises because of the wide
distribution of predicted ΔHf (P[ΔHf,MP− ΔHf,pred]), which drives up
the error of the random error baseline dramatically. Roost is
remarkably shown to have considerable error cancellation (80%
higher MAE on ΔHd using ΔHf,rand) despite the MAE on ΔHd using
ΔHf,rand already being competitive with the actual predictions (ΔHd
using ΔHf,pred) made by the other compositional models.
However, we emphasize that even benefiting from this

substantial error cancellation, Roost is not able to detect the
stability of compounds in sparse chemical spaces (as shown in
Fig. 5). The only model that performs suitably at this task is the
structural representation, CGCNN (Fig. 7d), and this model exhibits
a much smaller degree of error cancellation (MAE on ΔHd
increased by 26% and F1 decreased by 3% using ΔHf,rand). Because
ΔHf,pred for CGCNN is sufficiently accurate (MAE on ΔHf= 34meV/
atom), the lack of error cancellation does not have a deleterious
effect on stability predictions.

DISCUSSION
There have been a number of recent successes in the application
of ML for materials design problems. These models have given the
impression that ML can predict formation energies with near-DFT
accuracy20,23,46. However, the critical question of whether this
implies that compound stability can be predicted by ML has not
been rigorously assessed. In this work, we show that while indeed
existing ML models can predict ΔHf with relatively high accuracy
from the chemical formula, they are insufficient to accurately
distinguish stable from unstable compounds within an arbitrary
chemical space. The error in predicting DFT-calculated ΔHf by ML
models is often compared favorably with the error DFT makes in
predicting ΔHf relative to experimentally obtained values. This
comparison neglects the fact that the errors in DFT-calculated ΔHf
are beneficially systematic, whereas the errors made by the ML
models are not. For DFT calculations, this leads to substantially
lower errors for stability predictions (ΔHd) than for ΔHf. A similarly
beneficial cancellation of errors does not occur for ML models and
the errors in ΔHd are comparable with ΔHf, inhibiting accurate
predictions of material stability. Hence, while the claim that ML-
predicted formation energies have similar errors as DFT compared
with experiment is technically correct, it does not imply that in
their current state ML models are as useful as DFT, or that ML can
replace DFT for the computationally guided discovery of novel
compounds. As new ML models for formation energy are

Fig. 8 Error cancellation in formation energy predictions. a Schematic illustration contrasting how random and systematic errors on ΔHf of
the same average magnitude manifest as larger and smaller errors on predicted ground-state lines (ΔHd). b Comparing the performance on
stability predictions using ML-predicted ΔHf (ΔHf,pred, filled bars) and ΔHf with perturbations drawn randomly from the distribution of ΔHf,pred
errors (ΔHf,rand=ΔHf,MP+ P[ΔHf,MP−ΔHf,pred], hatched bars). The mean absolute error (MAE) on ΔHd is shown by the black bars (left axis). The
F1 score for classifying compounds as stable (ΔHd ≤ 0) or unstable (ΔHd > 0) is shown by the brown bars (right axis). The results for the
randomly perturbed case are averaged over three random samples with the standard deviation shown as an error bar. The standard deviation
is too small to see in most cases.
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developed, it is imperative to assess their viability as inputs for
stability predictions and, most critically, for problems that
resemble how the models would be implemented to address
emerging materials design problems. In this work, we present a
set of tests that facilitate this assessment and allow for direct
comparison with existing ML models. All data and code required
to repeat this set of stability analyses for the models shown in this
work or any new model are available at https://github.com/
CJBartel/TestStabilityML.

METHODS
Materials project data
All entries in the MP9 database with ΔHf < 1 eV/atom were queried on July
26, 2019 using the MP API47. This produced 85,014 unique nonelemental
chemical formulas. For each chemical formula, we obtained the formation
energy per atom, ΔHf, for all structures having that formula, and used the
most negative (ground-state) ΔHf for training the models and obtaining
ΔHd by the convex hull construction. MP applies a correction scheme to
improve the agreement between DFT-calculated thermodynamic proper-
ties (ΔHf and ΔHd) and experiment15,48,49. Additional details on the MP
calculation procedure can be found at https://materialsproject.org/docs/
calculations.
Although the MP database contains a wide range of inorganic crystalline

solids, it is an evolving resource that periodically includes more and more
compounds as they are discovered or calculated by the community. As
such, the calculated ΔHd that were used for training and testing each
model are subject to change over time as new stable materials are added
to the database. This fact is not unique to MP and is inherent in all open
materials databases that would be considered for training and evaluating
ML models on large datasets of DFT calculations. The ΔHd and ΔHf used for
all compounds in this work are available within https://github.com/
CJBartel/TestStabilityML.

General training approach
Fivefold cross-validation was used to produce the model-predicted ΔHf,pred
shown in Fig. 2. Each predicted value corresponds with the prediction
made on that compound when it was in the validation set (i.e., not used for
training). ΔHf,pred was then used in the convex hull analysis to generate
ΔHd,pred shown in Fig. 3, from which stability classifications were made as
shown in Fig. 4. For the Li–Mn–TM–O examples (Fig. 5 and Table 1), each
model was trained on all MP entries except those 267 quaternary
compounds belonging to the Li–Mn–TM–O chemical spaces. An analogous
approach was used when training on ΔHd instead of ΔHf to generate the
results shown in Fig. 6, Supplementary Figs. 3 and 4, Supplementary Table
1, and Supplementary Table 2.

Compositional model training
Three of the compositional representations—ElFrac, Meredig20, and
Magpie21—were implemented using matminer50 and trained using
gradient boosting as implemented in XGBoost30 with 200 trees and a
maximum depth of 5. Preliminary tests showed XGBoost and these
hyperparameters led to the highest accuracy of tested algorithms.
AutoMat22 was used as implemented in ref. 22. Roost24 was trained for
500 epochs using an Adam optimizer with an initial learning rate of 5 ×
10−4 and an L1 loss function. ElemNet was implemented as described in
ref. 23 using the Keras ML framework51. ElemNet was trained using an initial
learning rate of 10−4 with an Adam optimizer for 200 epochs. Overall, 10%
of the input data was set aside for validation, and the model weights from
the epoch with best loss on the validation set were used for predictions.
Regarding training each representation as a classifier, for ElFrac, Meredig,

Magpie, and AutoMat, we used an XGBoost classifier with the same
parameters as used for regression. For ElemNet, we added a sigmoid
activation function to the output and used cross entropy loss for training.
All other aspects of these models were identical to those trained for
regression. Roost was excluded from the classification analysis as
modifying this representation to perform classification required more
extensive changes than for the other representations.
Learning curves for all compositional models trained on ΔHf are

provided in Supplementary Fig. 5 along with training and inference times
in Supplementary Table 3. The code used to train and evaluate all models
is available at https://github.com/CJBartel/TestStabilityML.

CGCNN training
We used a nested fivefold cross-validation to train the CGCNN25 model for
the MP ΔHf dataset. As a general procedure for cross-validation, the
dataset was split into five groups and each group was iteratively taken as a
hold-out test set. For each fold, we split the training set to 75% training
and 25% validation, thus the overall ratio of training, validation, and test
was 60%, 20%, and 20%, respectively. The CGCNN model was iteratively
updated by minimizing the loss (mean squared error) on the training set,
and the validation score (MAE) was monitored after each epoch. After 1000
epochs, the model with the best validation score was selected and then
evaluated on the hold-out test set. Results of the fivefold hold-out test sets
were accumulated as the final predictions of the dataset.
For the Li–Mn–TM–O case in which the test set is defined, we split the

remaining compounds into five groups and iteratively took each group as
the validation set (20%) and the remaining as the training set (80%). The best
CGCNN model of each fold was selected as the one with the best validation
score (MAE). We then applied the 5 CGCNN models to the 267 Li–Mn–TM–O
test compounds and used the average of the predicted ΔHf for each model.

DATA AVAILABILITY
All data necessary for reproducing this work are freely available via the Materials
Project database at https://materialsproject.org.

CODE AVAILABILITY
A public repository at https://github.com/CJBartel/TestStabilityML contains the
following items: code for training each compositional model in this work, code for
assessing the stability of compounds given predicted formation energies (for the
models shown in this work or any new model), the formation and decomposition
energy data for all models studied in this work, and code for generating all figures
and tables in the main text and Supplementary Information.
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